Long QT Syndrome pathophysiology
Long QT Syndrome Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Long QT Syndrome pathophysiology On the Web |
American Roentgen Ray Society Images of Long QT Syndrome pathophysiology |
Risk calculators and risk factors for Long QT Syndrome pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [2]
Overview
Pathophysiology
Genetics
The two most common types of LQTS are genetic and drug-induced. Genetic LQTS can arise from mutation to one of several genes. These mutations tend to prolong the duration of the ventricular action potential (APD), thus lengthening the QT interval. LQTS can be inherited in an autosomal dominant or an autosomal recessive fashion. The autosomal recessive forms of LQTS tend to have a more severephenotype, with some variants having associated syndactyly (LQT8) or congenital neural deafness (LQT1). A number of specific genes loci have been identified that are associated with LQTS.
Associated syndromes
A number of syndromes are associated with LQTS.
Jervell and Lange-Nielsen syndrome
The Jervell and Lange-Nielsen syndrome (JLNS) is an autosomal recessive form of LQTS with associated congenital deafness. It is caused specifically by mutation of the KCNE1 and KCNQ1 genes
In untreated individuals with JLNS, about 50 percent die by the age of 15 years due to ventricular arrhythmias.
Romano-Ward syndrome
Romano-Ward syndrome is an autosomal dominant form of LQTS that is notassociated with deafness.