Fragile X syndrome pathophysiology
Fragile X syndrome Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Fragile X syndrome pathophysiology On the Web |
American Roentgen Ray Society Images of Fragile X syndrome pathophysiology |
Risk calculators and risk factors for Fragile X syndrome pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Pathophysiology
The diagram (left) of X-linked recessive inheritance is not entirely inappropriate but it markedly oversimplifies the situation and does not provide a sufficient foundation for genetic counseling about the fragile X syndrome. Technically, fragile X syndrome is an X-linked dominant condition with reduced penetrance.
Because males normally have only one copy of the X chromosome, those males with significant trinucleotide expansion at the FMR1 locus are symptomatic. They are intellectually disabled and may show various physical features of the fragile X syndrome.
Females have two X chromosomes and thus have double the chance of having a working FMR1 allele. Females carrying one X chromosome with an expanded FMR1 gene can have some signs and symptoms of the disorder or be normal. Although the extra X chromosome can serve as a backup, only one X chromosome is active at a time due to X-inactivation.
Males with the fragile X cannot transmit it to any of their sons (since males contribute a Y chromosome, not an X, to their male offspring), but will transmit it to all of their daughters, as males contribute their X to all of their daughters.
Females carrying one copy of the fragile X can transmit it to their sons or daughters; in this case each child has a 50% chance of inheriting the fragile X. Sons who receive the fragile X are at high risk of intellectual disability. Daughters who receive the fragile X may appear normal or they may be intellectually disabled, usually to a lesser degree than boys with the syndrome. The transmission of fragile X often increases with each passing generation. This seemingly anomalous pattern of inheritance is referred to as the Sherman paradox.