Thalassemia pathophysiology
Thalassemia Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Thalassemia pathophysiology On the Web |
American Roentgen Ray Society Images of Thalassemia pathophysiology |
Risk calculators and risk factors for Thalassemia pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Pathophysiology
Thalassemia produces a deficiency of α or β globin, unlike sickle-cell disease which produces a specific mutant form of β globin.
β globin chains are encoded by a single gene on chromosome 11; α globin chains are encoded by two closely linked genes on chromosome 16. Thus in a normal person with two copies of each chromosome, there are two loci encoding the β chain, and four loci encoding the α chain.[1]
Deletion of one of the α loci has a high prevalence in people of African-American or Asian descent, making them more likely to develop α thalassemias. β thalassemias are common in African-Americans, but also in Greeks and Italians.
Alpha (α) thalassemias
The α thalassemias involve the genes HBA1 (Online Mendelian Inheritance in Man (OMIM) 141800) and HBA2 (Online Mendelian Inheritance in Man (OMIM) 141850), inherited in a Mendelian recessive fashion. It is also connected to the deletion of the 16p chromosome. α thalassemias result in decreased alpha-globin production, therefore fewer alpha-globin chains are produced, resulting in an excess of β chains in adults and excess γ chains in newborns. The excess β chains form unstable tetramers (called Hemoglobin H or HbH of 4 beta chains) which have abnormal oxygen dissociation curves.
There are four genetic loci for α globin, two of which are maternal in origin and two of which are paternal in origin. The severity of the α thalassemias is correlated with the number of affected α globin loci: the greater the number of affected loci, the more severe will be the manifestations of the disease.
- If one of the four α loci is affected, there is minimal effect. Three α-globin loci are enough to permit normal hemoglobin production, and there is no anemia or hypochromia in these people. They have been called silent carriers.
- If two of the four α loci are affected, the condition is called alpha thalassemia trait. Two α loci permit nearly normal erythropoiesis, but there is a mild microcytic hypochromic anemia. The disease in this form can be mistaken for iron deficiency anemia and treated inappropriately with iron. Alpha thalassemia trait can exist in two forms: one form, associated with Asians, involves cis deletion of two alpha loci on the same chromosome; the other, associated with Blacks, involves trans deletion of alpha loci on different (homologous) chromosomes.
- If three loci are affected, the condition is called Hemoglobin H disease. Two unstable hemoglobins are present in the blood: Hemoglobin Barts (tetrameric γ chains) and Hemoglobin H (tetrameric β chains). Both of these unstable hemoglobins have a higher affinity for oxygen than normal hemoglobin, resulting in poor oxygen delivery to tissues. There is a microcytic hypochromic anemia with target cells and Heinz bodies (precipitated HbH) on the peripheral blood smear, as well as splenomegaly. The disease may first be noticed in childhood or in early adult life, when the anemia and splenomegaly are noted.
- If all four loci are affected, the fetus cannot live once outside the uterus and may not survive gestation: most such infants are dead at birth with hydrops fetalis, and those who are born alive die shortly after birth. They are edematous and have little circulating hemoglobin, and the hemoglobin that is present is all tetrameric γ chains (hemoglobin Barts).
Beta (β) thalassemias
Beta thalassemias are due to mutations in the HBB gene on chromosome 11 (Online Mendelian Inheritance in Man (OMIM) 141900), also inherited in an autosomal-recessive fashion. The severity of the disease depends on the nature of the mutation. Mutations are characterized as (βo) if they prevent any formation of β chains; they are characterized as (β+) if they allow some β chain formation to occur. In either case there is a relative excess of α chains, but these do not form tetramers: rather, they bind to the red blood cell membranes, producing membrane damage, and at high concentrations they form toxic aggregates.
Any given individual has two β globin alleles.
- If only one β globin allele bears a mutation, the disease is called β thalassemia minor (or sometimes called β thalassemia trait). This is a mild microcytic anemia. In most cases β thalassemia minor is asymptomatic, and many affected people are unaware of the disorder. Detection usually involves measuring the mean corpuscular volume (size of red blood cells) and noticing a slightly decreased mean volume than normal. The patient will have an increased fraction of Hemoglobin A2 (>2.5%) and a decreased fraction of Hemoglobin A (<97.5%).
- If both alleles have thalassemia mutations, the disease is called β thalassemia major or Cooley's anemia. This is a severe microcytic, hypochromic anemia. Untreated, this progresses to death before age twenty. Treatment consists of periodic blood transfusion; splenectomy if splenomegaly is present, and treatment of transfusion-caused iron overload. Cure is possible by bone marrow transplantation.
- Thalassemia intermedia is a condition intermediate between the major and minor forms. Affected individuals can often manage a normal life but may need occasional transfusions e.g. at times of illness or pregnancy, depending on the severity of their anemia.
The genetic mutations present in β thalassemias are very diverse, and a number of different mutations can cause reduced or absent β globin synthesis. Two major groups of mutations can be distinguished:
- Nondeletion forms: These defects generally involve a single base substitution or small deletion or inserts near or upstream of the β globin gene. Most commonly, mutations occur in the promoter regions preceding the beta-globin genes. Less often, abnormal splice variants are believed to contribute to the disease.
- Deletion forms: Deletions of different sizes involving the β globin gene produce different syndromes such as (βo) or hereditary persistence of fetal hemoglobin syndromes.
Delta (δ) thalassemia
As well as alpha and beta chains being present in hemoglobin about 3% of adult hemoglobin is made of alpha and delta chains. Just as with beta thalassemia, mutations can occur which affect the ability of this gene to produce delta chains. A mutation that prevents formation of any delta chains is termed a delta0 mutation, whereas one that decreases but does not eliminate production of delta chain is termed a delta+ mutation. When one inherits two delta0 mutations, no hemoglobin A2 (alpha2,delta2) can be formed. Hematologically, however, this is innocuous because only 2-3% of normal adult hemoglobin is hemoglobin A2. The individual will have normal hematological parameters (erythrocyte count, total hemoglobin, mean corpuscular volume, red cell distribution width). Individuals who inherit only one delta thalassemia mutation gene will have a decreased hemoglobin A2, but also no hematological consequences. The importance of recognizing the existence of delta thalassemia is seen best in cases where it may mask the diagnosis of beta thalassemia trait. In beta thalassemia, there is an increase in hemoglobin A2, typically in the range of 4-6% (normal is 2-3%). However, the co-existence of a delta thalassemia mutation will decrease the value of the hemoglobin A2 into the normal range, thereby obscurring the diagnosis of beta thalassemia trait. This can be important in genetic counseling, because a child who is the product of parents each of whom has beta0 thalassemia trait has a one in four chance of having beta thalassemia major.
In combination with other hemoglobinopathies
Thalassemia can co-exist with other hemoglobinopathies. The most common of these are:
- Hemoglobin E/thalassemia: common in Cambodia, Thailand, and parts of India; clinically similar to β thalassemia major or thalassemia intermedia.
- Hemoglobin S/thalassemia, common in African and Mediterranean populations; clinically similar to sickle cell anemia, with the additional feature of splenomegaly
- Hemoglobin C/thalassemia: common in Mediterranean and African populations, hemoglobin C/βo thalassemia causes a moderately severe hemolytic anemia with splenomegaly; hemoglobin C/β+ thalassemia produces a milder disease.
References
- ↑ Kumar et al, eds. Robbins and Cotran's Pathologic Basis of Disease, 7th ed.