Burkholderia xenovorans

Revision as of 14:53, 4 September 2012 by WikiBot (talk | contribs) (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Burkholderia xenovorans
Scientific classification
Kingdom: Bacteria
Phylum: Proteobacteria
Class: Beta Proteobacteria
Order: Burkholderiales
Family: Burkholderiaceae
Genus: Burkholderia
Species: B. xenovorans
Binomial name
Burkholderia xenovorans
Goris et al. 2004


Burkholderia xenovorans is a species of Proteobacteria.

Template:Proteobacteria-stub

Genomics

The genome of Burkholderia xenovorans (LB400) is one of the largest bacterial genomes completely sequenced to date. The recent genomic studies of this organism have helped expand our understanding of bacterial catabolism, non-catabolic physiological adaptation to organic compounds, and the evolution of large bacterial genomes. The metabolic pathways from phylogenetically diverse isolates are very similar with respect to overall organization. As originally noted in pseudomonads, a large number of "peripheral aromatic" pathways funnel a range of natural and xenobiotic compounds into a restricted number of "central aromatic" pathways. These pathways are genetically organized in genus-specific fashions. Comparative genomic studies reveal that some pathways are more widespread than initially thought. Functional genomic studies have established that even organisms harboring high numbers of homologous enzymes seem to contain few examples of true redundancy. Analyses have indicated that recent genetic flux appears to have played a more significant role in the evolution of some large genomes, such as Burkholderia xenovorans LB400's, than others. However, the emerging trend is that the large gene repertoires of potent pollutant degraders such as Burkholderia xenovorans LB400 have evolved principally through more ancient processes. That this is true in such phylogenetically diverse species is remarkable and further suggests the ancient origin of this catabolic capacity. Aromatic compounds are among the most recalcitrant of organic pollutants and there is much interest in using Microbial biodegradation to cean up contaminated sites. [1]

Bioremediation

Interest in the microbial biodegradation of pollutants has intensified in recent years as mankind strives to find sustainable ways to cleanup contaminated environments.[2] These bioremediation methods harness the naturally occurring, microbial catabolic diversity to degrade, transform or accumulate a huge range of compounds including hydrocarbons (e.g. oil), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), pharmaceutical substances, radionuclides and metals. Burkholderia xenovorans is one of the organisms currently being studied for this purpose.

References

  1. McLeod MP and Eltis LD (2008). "Genomic Insights Into the Aerobic Pathways for Degradation of Organic Pollutants". Microbial Biodegradation: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-17-2.
  2. Diaz E (editor). (2008). Microbial Biodegradation: Genomics and Molecular Biology (1st ed. ed.). Caister Academic Press. ISBN 978-1-904455-17-2.