Heat exchanger
A heat exchanger is a device built for efficient heat transfer from one medium to another, whether the media are separated by a solid wall so that they never mix, or the media are in direct contact.[1] They are widely used in space heating, refrigeration, air conditioning, power plants, chemical plants, petrochemical plants, petroleum refineries, and natural gas processing. One common example of a heat exchanger is the radiator in a car, in which a hot engine-cooling fluid, like antifreeze, transfers heat to air flowing through the radiator.
Flow arrangement
Heat exchangers may be classified according to their flow arrangement. In parallel-flow heat exchangers, the two fluids enter the exchanger at the same end, and travel in parallel to one another to the other side. In counter-flow heat exchangers the fluids enter the exchanger from opposite ends. The counter current design is most efficient, in that it can transfer the most heat. See countercurrent exchange. In a cross-flow heat exchanger, the fluids travel roughly perpendicular to one another through the exchanger.
For efficiency, heat exchangers are designed to maximize the surface area of the wall between the two fluids, while minimizing resistance to fluid flow through the exchanger. The exchanger's performance can also be affected by the addition of fins or corrugations in one or both directions, which increase surface area and may channel fluid flow or induce turbulence.
The driving temperature across the heat transfer surface varies with position, but an appropriate mean temperature can be defined. In most simple systems this is the log mean temperature difference (LMTD). Sometimes direct knowledge of the LMTD is not available and the NTU method is used.
-
Fig. 1: Shell and tube heat exchanger, single pass (1-1 parallel flow)
-
Fig. 2: Shell and tube heat exchanger, 2-pass tube side (1-2 crossflow)
-
Fig. 3: Shell and tube heat exchanger, 2-pass shell side, 2-pass tube side (2-2 countercurrent)
Types of heat exchangers
Shell and Tube heat exchanger
Shell and tube heat exchangers consist of a series of tubes. One set of these tubes contains the fluid that must be either heated or cooled. The second fluid runs over the tubes that are being heated or cooled so that it can either provide the heat or absorb the heat required. A set of tubes is called the tube bundle and can be made up of several types of tubes: plain, longitudinally finned etc. Shell and Tube heat exchangers are typically used for high pressure applications (with pressures greater than 30 bar and temperatures greater than 260°C.[2] This is because the shell and tube heat exchangers are robust due to their shape.
There are several thermal design features that are to be taken into account when designing the tubes in the shell and tube heat exchangers. These include:
- Tube diameter: Using a small tube diameter makes the heat exchanger both economical and compact. However, it is more likely for the heat exchanger to foul up faster and the small size makes mechanical cleaning of the fouling difficult. To prevail over the fouling and cleaning problems, larger tube diameters can be used. Thus to determine the tube diameter, the available space, cost and the fouling nature of the fluids must be considered.
- Tube thickness: The thickness of the wall of the tubes is usually determined to ensure:
- There is enough room for corrosion
- That flow-induced vibration has resistance
- Axial strength
- Ability to easily stock spare parts cost
Sometimes the wall thickness is determined by the maximum pressure differential across the wall.
- Tube length: heat exchangers are usually cheaper when they have a smaller shell diameter and a long tube length. Thus, typically there is an aim to make the heat exchanger as long as possible. However, there are many limitations for this, including the space available at the site where it is going to be used and the need to ensure that there are tubes available in lengths that are twice the required length (so that the tubes can be withdrawn and replaced). Also, it has to be remembered that lone, thin tubes are difficult to take out and replace.
- Tube pitch: when designing the tubes, it is practical to ensure that the tube pitch (i.e. the centre-centre distance of adjoining tubes) is not less than 1.25 times the tubes' outside diameter
Plate heat exchanger
Another type of heat exchanger is the plate heat exchanger. One is composed of multiple, thin, slightly-separated plates that have very large surface areas and fluid flow passages for heat transfer. This stacked-plate arrangement can be more effective, in a given space, than the shell and tube heat exchanger. Advances in gasket and brazing technology have made the plate-type heat exchanger increasingly practical. In HVAC applications, large heat exchangers of this type are called plate-and-frame; when used in open loops, these heat exchangers are normally of the gasketed type to allow periodic disassembly, cleaning, and inspection. There are many types of permanently-bonded plate heat exchangers, such as dip-brazed and vacuum-brazed plate varieties, and they are often specified for closed-loop applications such as refrigeration. Plate heat exchangers also differ in the types of plates that are used, and in the configurations of those plates. Some plates may be stamped with "chevron" or other patterns, where others may have machined fins and/or grooves.
Regenerative heat exchanger
A third type of heat exchanger is the regenerative heat exchanger. In this, the heat from a process is used to warm the fluids to be used in the process, and the same type of fluid is used either side of the heat exchanger (these heat exchangers can be either plate-and-frame or shell-and-tube construction). These exchangers are used only for gases and not for liquids. The major factor for this is the heat capacity of the heat transfer matrix. Also see: Countercurrent exchange, Regenerator, Economizer
Adiabatic Wheel heat exchanger
A fourth type of heat exchanger uses an intermediate fluid or solid store to hold heat, which is then moved to the other side of the heat exchanger to be released. Two examples of this are adiabatic wheels, which consist of a large wheel with fine threads rotating through the hot and cold fluids, and fluid heat exchangers. This type is used when it is acceptable for a small amount of mixing to occur between the two streams. See also: Air preheater.
Fluid heat exchangers
This is a heat exchanger with a gas passing upwards through a shower of fluid (often water), and the fluid is then taken elsewhere before being cooled. This is commonly used for cooling gases whilst also removing certain impurities, thus solving two problems at once. It is widely used in espresso machines as an energy-saving method of cooling super-heated water to be used in the extraction of espresso.
Dynamic Scraped surface heat exchanger
Another type of heat exchanger is called "dynamic heat exchanger" or "scraped-surface heat exchanger". This is mainly used for heating or cooling with high-viscosity products, crystallization processes, evaporation and high-fouling applications. Long running times are achieved due to the continuous scraping of the surface, thus avoiding fouling and achieving a sustainable heat transfer rate during the process.
Phase-change heat exchangers
In addition to heating up or cooling down fluids in just a single phase, heat exchangers can be used either to heat a liquid to evaporate (or boil) it or used as condensers to cool a vapor and condense it to a liquid. In chemical plants and refineries, reboilers used to heat incoming feed for distillation towers are often heat exchangers. [3][4]
Distillation set-ups typically use condensers to condense distillate vapors back into liquid.
Power plants which have steam-driven turbines commonly use heat exchangers to boil water into steam. Heat exchangers or similar units for producing steam from water are often called boilers or steam generators.
In the nuclear power plants called pressurized water reactors, special large heat exchangers which pass heat from the primary (reactor plant) system to the secondary (steam plant) system, producing steam from water in the process, are called steam generators. All fossil-fueled and nuclear power plants using steam-driven turbines have surface condensers to convert the exhaust steam from the turbines into condensate (water) for re-use.[5][6]
In order to conserve energy and cooling capacity in chemical and other plants, regenerative heat exchangers can be used to transfer heat from one stream that needs to be cooled to another stream that needs to be heated, such as distillate cooling and reboiler feed pre-heating.
This term can also refer to heat exchangers that contain a material within their structure that has a change of phase. This is usually a solid to liquid phase due to the small volume difference between these states. This change of phase effectively acts as a buffer because it occurs at a constant temperature but still allows for a the heat exchanger to accept additional heat. One example where this has been investigated is for use in high power aircraft electronics.
HVAC air coils
One of the widest uses of heat exchangers is for air conditioning of buildings and vehicles. This class of heat exchangers is commonly called air coils, or just coils due to their often-serpentine internal tubing. Liquid-to-air, or air-to-liquid HVAC coils are typically of modified crossflow arrangement. In vehicles, heat coils are often called heater cores.
On the liquid side of these heat exchangers, the common fluids are water, a water-glycol solution, steam, or a refrigerant. For heating coils, hot water and steam are the most common, and this heated fluid is supplied by boilers, for example. For cooling coils, chilled water and refrigerant are most common. Chilled water is supplied from a chiller that is potentially located very far away, but refrigerant must come from a nearby condensing unit. When a refrigerant is used, the cooling coil is the evaporator in the vapor-compression refrigeration cycle. HVAC coils that use this direct-expansion of refrigerants are commonly called DX coils.
On the air side of HVAC coils a significant difference exists between those used for heating, and those for cooling. Due to psychrometrics, air that is cooled often has moisture condensing out of it, except with extremely dry air flows. Heating some air increases that airflow's capacity to hold water. So heating coils need not consider moisture condensation on their air-side, but cooling coils must be adequately designed and selected to handle their particular latent (moisture) as well as the sensible (cooling) loads. The water that is removed is called condensate.
For many climates, water or steam HVAC coils can be exposed to freezing conditions. Because water expands upon freezing, these somewhat expensive and difficult to replace thin-walled heat exchangers can easily be damaged or destroyed by just one freeze. As such, freeze protection of coils is a major concern of HVAC designers, installers, and operators.
The introduction of indentations (1/08/1934) placed within the heat exchange fins controlled condensation, allowing water molecules to remain in the cooled air. This invention allowed for refrigeration without icing of the cooling mechanism. Inventor John C. Raisley Patent number 2,046,968 issued July 7th 1936[7]
The heat exchangers in direct-combustion furnaces, typical in many residences, are not 'coils'. They are, instead, gas-to-air heat exchangers that are typically made of stamped steel sheet metal. The combustion products pass on one side of these heat exchangers, and air to be conditioned on the other. A cracked heat exchanger is therefore a dangerous situation requiring immediate attention because combustion products are then likely to enter the building.
Spiral Heat Exchangers
A spiral heat exchanger (SHE), may refer to a helical (coiled) tube configuration[8], more generally, the term refers to a pair of flat surfaces that are coiled to form the two channels in a counter-flow arragement.[9]. Each of the two channels has one long curved path. A pair of fluid ports are connected tangentially to the outer arms of the spiral, and axial ports are common, but optional.[10]
The main advantage of the SHE is its highly efficient use of space. This attribute is often leveraged and partially reallocated to gain other improvements in performance, according to well known tradeoffs in heat exchanger design. (A notable tradeoff is capital cost vs operating cost.) A compact SHE may be used to have a smaller footprint and thus lower all-around capital costs, or an over-sized SHE may be used to have less pressure drop, less pumping energy, higher thermal efficiency, and lower energy costs. [11]
Self cleaning
SHE's are often used in the heating of fluids which contain solids and thus have a tendency to foul the inside of the heat exchanger. The low pressure drop gives the SHE its ability to handle fouling more easily. The SHE uses a “self cleaning” mechanism, whereby fouled surfaces cause a localized increase in fluid velocity, thus increasing the drag (or fluid friction) on the fouled surface, thus helping to dislodge the blockage and keep the heat exchanger clean. "The internal walls that make up the heat transfer surface are often rather thick, which makes the SHE very robust, and able to last a long time in demanding environments."[12] They are also easily cleaned, opening out like an oven where any build up of foulant can be removed by pressure washing.
Applications
The SHE is ideal for applications such as pasteurization, digester heating, heat recovery, pre-heating (see: recuperator), and effluent cooling. For sludge treatment, SHE’s are generally smaller than other types of heat exchangers. [citation needed]
Selection
Due to the many variables involved, selecting optimal heat exchangers is challenging. Hand calculations are possible, but many iterations are typically needed. As such, heat exchangers are most often selected via computer programs, either by system designers, who are typically engineers, or by equipment vendors.
In order to select an appropriate heat exchanger, the system designers (or equipment vendors) would firstly consider the design limitations for each heat exchanger type. Although cost is often the first criterion evaluated, there other several other important selection criteria which include:
- High/ Low pressure limits
- Thermal Performance
- Temperature ranges
- Product Mix (liquid/liquid, particulates or high-solids liquid)
- Pressure Drops across the exchanger
- Fluid flow capacity
- Cleanability, maintenance and repair
- Materials required for construction
- Ability and ease of future expansion
Choosing the right heat exchanger (HX) requires some knowledge of the different heat exchanger types, as well as the environment in which the unit must operate. Typically in the manufacturing industry, several differing types of heat exchangers are used for just the one process or system to derive the final product. For example, a kettle HX for pre-heating, a double pipe HX for the ‘carrier’ fluid and a plate and frame HX for final cooling. With sufficient knowledge of heat exchanger types and operating requirements, an appropriate selection can be made to optimise the process.[13]
Monitoring and maintenance
Integrity inspection of plate and tubular heat exchanger can be tested in-situ by the conductivity or helium gas methods. These methods confirm the integrity of the plates or tubes to prevent any cross contamination and the condition of the gaskets.
Condition monitoring of heat exchanger tubes may be conducted through Nondestructive methods such as eddy current testing.
The mechanics of water flow and deposits are often simulated by computational fluid dynamics or CFD. Fouling is a serious problem in some heat exchangers. River water is often used as cooling water, which results in biological debris entering the heat exchanger and building layers, decreasing the heat transfer coefficient. Another common problem is scale, which is made up of deposited layers of chemicals such as calcium carbonate or magnesium carbonate.
Fouling
Fouling occurs when a fluid goes through the heat exchanger, and the impurities in the fluid precipitate onto the surface of the tubes. Precipitation of these impurities can be caused by:
- Frequent use of the Heat Exchanger
- Not cleaning the Heat Exchanger regularly
- Reducing the velocity of the fluids moving through the heat exchanger
- Over-sizing of the heat exchanger
Effects of fouling are more abundant in the cold tubes of the heat exchanger, than in the hot tubes. This is because impurities are less likely to be dissolved in a cold fluid. This is because solubility increases as temperature increases.
Fouling reduces the cross sectional area for heat to be transferred and causes an increase in the resistance to heat transfer across the heat exchanger. This is because the thermal conductivity of the fouling layer is low. This reduces the overall heat transfer coefficient and efficiency of the heat exchanger. This in turn, can lead to an increase in pumping and maintenance costs.
Maintenance
Plate heat exchangers need to be dissembled and cleaned periodically. Tubular heat exchangers can be cleaned by such methods as acid cleaning, sandblasting, high-pressure water jet, bullet cleaning, or drill rods.
In large-scale cooling water systems for heat exchangers, water treatment such as purification, addition of chemicals, and testing, is used to minimize fouling of the heat exchange equipment. Other water treatment is also used in steam systems for power plants, etc. to minimize fouling and corrosion of the heat exchange and other equipment.
A variety of companies have started using waterborne oscillations technology to prevent biofouling. Without the use of chemicals, this type of technology has helped in providing a low-pressure drop in heat exchangers.
Heat exchangers in nature
Counter current Heat Exchangers
Heat exchangers occur naturally in the circulation system of fish and whales. Arteries to the skin carrying warm blood are intertwined with veins from the skin carrying cold blood, causing the warm arterial blood to exchange heat with the cold venous blood. This reduces the overall heat loss in cold waters. Heat exchangers are also present in the tongue of baleen whales as large volumes of water flow through their mouths[1] [2]. Wading birds use a similar system to limit heat losses from their body through their legs into the water.
In species that have external testes (such as humans), the artery to the testis is surrounded by a mesh of veins called the pampiniform plexus. This cools the blood heading to the testis, while reheating the returning blood.
Heat Exchangers in Industry
Heat exchangers are widely used in industry both for cooling and heating large scale industrial processes. The type and size of heat exchanger used can be tailored to suit a process depending on the type of fluid, its phase, temperature, density, viscosity, pressures, chemical composition and various other thermodynamic properties.
In many industrial processes there is waste of energy or a heat stream that is being exhausted, heat exchangers can be used to recover this heat and put it to use by heating a different stream in the process. This practice saves a lot of money in industry as the heat supplied to other streams from the heat exchangers would otherwise come from an external source which is more expensive and more harmful to the environment.
Heat exchangers are used in many industries, some of which include:
- Waste water treatment
- Refrigeration systems
- Wine-brewery industry
- Petroleum industry
In the waste water treatment industry, heat exchangers play a vital role in maintaining optimal temperatures within anaerobic digesters so as to promote the growth of microbes which remove pollutants from the waste water. The common types of heat exchangers used in this application are the double pipe heat exchanger as well as the plate and frame heat exchanger.
Other Types of Heat Exchangers
The human lungs also serve as an extremely efficient heat exchanger due to their large surface area to volume ratio[3].
See also
- Reboiler
- Steam generator (nuclear power)
- Heat pump
- Architectural engineering
- Mechanical engineering
- Heat recovery ventilation
- Log mean temperature difference (LMTD)
- Micro heat exchanger
- Thermosiphon
References
- ↑ Sadik Kakaç and Hongtan Liu (2002). Heat Exchangers: Selection, Rating and Thermal Design (2nd Edition ed.). CRC Press. ISBN 0849309026.
- ↑ Saunders, E. A. (1988). Heat Exchanges: Selection, Design and Construction. New York: Longman Scientific and Technical.
- ↑ Kister, Henry Z. (1992). Distillation Design (1st Edition ed.). McGraw-Hill. ISBN 0-07-034909-6.
- ↑ Perry, Robert H. and Green, Don W. (1984). Perry's Chemical Engineers' Handbook (6th Edition ed.). McGraw-Hill. ISBN 0-07-049479-7.
- ↑ Air Pollution Control Orientation Course from website of the Air Pollution Training Institute
- ↑ Energy savings in steam systems Figure 3a, Layout of surface condenser (scroll to page 11 of 34 pdf pages)
- ↑ Patent 2,046,968 John C Raisley
- ↑ Sentry Equipment Corp Spiral tube Heat Exchangers
- ↑ Alfa Laval Spiral Heat Exchangers
- ↑ http://www.gc3.com/techdb/manual/cooltext.htm
- ↑ Alfa Laval Spiral Heat Exchangers
- ↑ http://www.heseco.com/spiral-heat-exchangers.htm
- ↑
- White, F.M ‘Heat and Mass Transfer’ © 1988 Addison-Wesley Publishing Co. p602-604
- http://www.geothermie.de/egec-geothernet/prof/heat_exchangers.htm ‘Heat Exchangers’ Kevin D. Rafferty, Gene Culver Geo-Heat Center © 1996-2001 Last Accessed 17/3/08
- http://www.process-heating.com ‘For manufacturing engineers who use heat processing equipment- Heat exchanger basics’ BNP Media © 2007 Last Accessed 17/3/08
Coulson, J. and Richardson, J (1999). Chemical Engineering- Fluid Flow. Heat Transfer and Mass Transfer- Volume 1; Reed Educational & Professional Publishing LTD
External links
Wikimedia Commons has media related to Heat exchangers. |
- Heat Exchanger Tutorials
- Specifying Heat Exchangers
- Heat Exchanger Technology Overview
- Shell and Tube Heat Exchanger Design Software for Educational Applications (PDF)
- EU Pressure Equipment Guideline
- A Thermal Management Concept For More Electric Aircraft Power System Application (PDF)
- Mechanical design fundamentals for heat exchangers
- Heat transfer fundamentals
- Forum about heat exchangers
- Stainless Steel Heat Exchanger
- Process Screw Heat Exchanger
- Open Cell Foam Heat Pump
de:Wärmeübertrager fa:مبدل حرارتی hr:Rashladnik id:Penukar panas it:Scambiatore di calore he:מחליף חום nl:Warmtewisselaar no:Kondensator (kuldeanlegg) fi:Lämmönsiirrin sv:Värmeväxlare
- Pages with broken file links
- CS1 maint: Extra text
- CS1 maint: Multiple names: authors list
- Pages with script errors
- All articles with unsourced statements
- Articles with unsourced statements from April 2008
- Articles with invalid date parameter in template
- Commons category link is locally defined
- Heat exchangers