Liquid chromatography-mass spectrometry

Revision as of 19:07, 4 September 2012 by WikiBot (talk | contribs) (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Infobox chemical analysis Liquid chromatography-mass spectrometry (LC-MS) is an analytical chemistry technique that combines the physical separation capabilities of liquid chromatography (aka HPLC) with the mass analysis capabilities of mass spectrometry. LC-MS is a powerful technique used for many applications which has very high sensitivity and specificity. Generally its application is oriented towards the specific detection and potential identification of chemicals in the presence of other chemicals (in a complex mixture).

Liquid Chromatography

Scale

A major difference between traditional HPLC and the chromatography used in LC-MS is that in the latter case the scale is usually much smaller, both regarding internal diameter of the column and even more so with respect to flow rate since it scales as the square of the diameter. 1 mm columns were standard for LC-MS (as opposed to 4.6 mm for HPLC) for a long time. More recently 300<math>\mu</math>m and even "capillary" 75<math>\mu</math>m columns have become more prevalent. At the low end of these column diameters the flow rates approach 100nL/min and are generally used with nanospray sources.[1]

Flow Splitting

When standard bore (4.6 mm) columns are used the flow is often split ~10:1. This can be beneficial by allowing the use of other techniques in tandem such as MS and UV. However splitting the flow to UV will decrease the sensitivity of spectrophotometric detectors. The Mass Spec on the other hand will give improved sensitivity at flow rates of 200 μL/min or less. This is due to the fact that the analyte ions have to be vaporised (nebulized) in order to become charged. As the solvent flows into the MS the solvent evaporates and the gained charge remains, therefore the mass to charge ratio increases. This occurs until the charges repel each other in a process called Coulombic Explosion. If the above is not optimal for this process, the solvent does not evaporate and the ions do not become charged to the same extent. This results in a build up of solvent and uncharged ions in the source area of the MS, resulting in poor ionization and decreased sensitivity.

Mass Spectrometry

Mass Analyzer

Most mass spectrometers can be used in LC-MS; however, quadrupole and quadrupole ion traps are most common. Bruker manufactures high capacity ion traps for LC-MS(n). Manufacturers of triple quadrupole mass spectrometers include Varian, Inc., MDS, Waters Corporation, Agilent, Shimadzu Scientific and Thermo Fisher Scientific.

Interface

Understandably the interface between a liquid phase technique which continuously flows liquid, and a gas phase technique carried out in a vacuum was difficult for a long time. The advent of electrospray ionization changed this. The interface is most often an electrospray ion source or variant such as a nanospray source; however fast atom bombardment, thermospray and atmospheric pressure chemical ionization interfaces are also used.[2] Various deposition and drying techniques have also been used such as using moving belts; however the most common of these is off-line MALDI deposition. [3][4]

Applications

Pharmacokinetics

LC-MS is very commonly used in pharmacokinetic studies of pharmaceuticals. These studies tell us how quickly a drug will be cleared from the Hepatic Blood flow, and organs of the body. MS is used for this due to high sensitivity and exceptional specificity compared to UV (as long as the analyte can be suitably ionised), and quick analysis time. The major advantage MS has is the use of Tandem MS-MS. You can program the detector to select out certain ions to fragment. The process is more complex than just a selection technique, but this is essentially what it does. This results in a response that is due to a chosen fragment of a molecule chosen by the operator and as long as there are no interferences or ion suppression the time taken during the LC separation can be quite quick. It is common now to have analysis times of 1 minute or less by MS-MS detection, compared to over 10 mins with UV detection.[5][6][7]

Proteomics

LC-MS is also used in the study of proteomics where again components of a complex mixture must be detected and identified in some manner. The bottom-up LC-MS approach to proteomics generally involves protease digestion (usually Trypsin) followed by LC-MS with peptide mass fingerprinting or LC-MS/MS (tandem MS) to derive sequence of individual peptides.

Drug Development

LC-MS is frequently used in drug development at many different stages including Peptide Mapping, Glycoprotein Mapping, Natural Products Dereplication, Bioaffinity Screening, In Vivo Drug Screening, Metabolic Stability Screening, Metabolite Identification, Impurity Identification, Degradant Identification, Quantitative Bioanalysis, and Quality Control.[8]

References

  1. Capillary liquid chromatography/mass spectrometry, Kenneth B. Tomer, M. Arthur Moseley, Leesa J. Deterding, Carol E. Parker, Mass Spectrometry Reviews, Vol 13, 1994, pp 431-457
  2. Combined liquid chromatography mass spectrometry. Part III. Applications of thermospray, Patrick Arpino, Mass Spectrometry Reviews, Vol 11, 1992 pp 3-40
  3. Combined liquid chromatography mass spectrometry. Part I. Coupling by means of a moving belt interface, Patrick Arpino, Mass Spectrometry Reviews, Vol 8, 1989 pp 35-55
  4. Coupling matrix-assisted laser desorption/ionization to liquid separations, Kermit K. Murray, Mass Spectrometry Reviews, Vol 16, pp 283-299
  5. Increasing Speed and Throughput When Using HPLC-MS/MS Systems for Drug Metabolism and Pharmacokinetic Screening, Y. Hsieh and W.A. Korfmacher, Current Drug Metabolism Volume 7, Number 5, 2006, Pp. 479-489
  6. Covey TR, Lee ED, Henion JD. 1986. High-speed liquid chromatography/tandem mass spectrometry for the determination of drugs in biological samples. Anal Chem 58:2453-2460.
  7. Thermospray liquid chromatography/mass spectrometry determination of drugs and their metabolites in biological fluids. Covey TR et al. Anal Chem. 1985 Feb;57(2):474-81
  8. LC/MS applications in drug development, Mass Spectrometry Reviews, Mike S. Lee, Edward H. Kerns, Vol 18, 1999, pp 187-279

Bibliography

  • Thurman, E. M.; Ferrer, Imma (2003). Liquid chromatography/mass spectrometry, MS/MS and time of flight MS: analysis of emerging contaminants. Columbus, OH: American Chemical Society. ISBN 0-8412-3825-1.
  • Ardrey, R. E.; Ardrey, Robert (2003). Liquid chromatography-mass spectrometry: an introduction. London: J. Wiley. ISBN 0-471-49801-7.
  • McMaster, Marvin C. (2005). LC/MS: a practical user's guide. New York: John Wiley. ISBN 0-471-65531-7.
  • Wilfried M.A. Niessen, Wilfried M. Niessen (2006). Liquid Chromatography-Mass Spectrometry, Third Edition (Chromatographic Science). Boca Raton: CRC. ISBN 0-8247-4082-3.
  • Yergey, Alfred L. (1990). Liquid chromatography/mass spectrometry: techniques and applications. New York: Plenum Press. ISBN 0-306-43186-6.

de:LC/MS

Template:WikiDoc Sources