PSMC4

Revision as of 13:36, 6 September 2012 by WikiBot (talk | contribs) (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Proteasome (prosome, macropain) 26S subunit, ATPase, 4
File:PBB Protein PSMC4 image.jpg
PDB rendering based on 2dvw.
Identifiers
Symbols PSMC4 ; MGC13687; MGC23214; MGC8570; MIP224; S6; TBP7
External IDs Template:OMIM5 Template:MGI HomoloGene4744
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

Proteasome (prosome, macropain) 26S subunit, ATPase, 4, also known as PSMC4, is a human gene.[1]

The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure composed of 2 complexes, a 20S core and a 19S regulator. The 20S core is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. The 19S regulator is composed of a base, which contains 6 ATPase subunits and 2 non-ATPase subunits, and a lid, which contains up to 10 non-ATPase subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes one of the ATPase subunits, a member of the triple-A family of ATPases which have a chaperone-like activity. This subunit has been shown to interact with an orphan member of the nuclear hormone receptor superfamily highly expressed in liver, and with gankyrin, a liver oncoprotein. Two transcript variants encoding different isoforms have been identified.[1]

References

  1. 1.0 1.1 "Entrez Gene: PSMC4 proteasome (prosome, macropain) 26S subunit, ATPase, 4".

Further reading

  • Goff SP (2003). "Death by deamination: a novel host restriction system for HIV-1". Cell. 114 (3): 281–3. PMID 12914693.
  • Nelbock P, Dillon PJ, Perkins A, Rosen CA (1990). "A cDNA for a protein that interacts with the human immunodeficiency virus Tat transactivator". Science. 248 (4963): 1650–3. PMID 2194290.
  • Dubiel W, Ferrell K, Rechsteiner M (1994). "Tat-binding protein 7 is a subunit of the 26S protease". Biol. Chem. Hoppe-Seyler. 375 (4): 237–40. PMID 8060531.
  • Matoba R, Okubo K, Hori N; et al. (1994). "The addition of 5'-coding information to a 3'-directed cDNA library improves analysis of gene expression". Gene. 146 (2): 199–207. PMID 8076819.
  • Shaw DR, Ennis HL (1993). "Molecular cloning and developmental regulation of Dictyostelium discoideum homologues of the human and yeast HIV1 Tat-binding protein". Biochem. Biophys. Res. Commun. 193 (3): 1291–6. doi:10.1006/bbrc.1993.1765. PMID 8323548.
  • Ohana B, Moore PA, Ruben SM; et al. (1993). "The type 1 human immunodeficiency virus Tat binding protein is a transcriptional activator belonging to an additional family of evolutionarily conserved genes". Proc. Natl. Acad. Sci. U.S.A. 90 (1): 138–42. PMID 8419915.
  • Dubiel W, Ferrell K, Rechsteiner M (1993). "Peptide sequencing identifies MSS1, a modulator of HIV Tat-mediated transactivation, as subunit 7 of the 26 S protease". FEBS Lett. 323 (3): 276–8. PMID 8500623.
  • Choi HS, Seol W, Moore DD (1996). "A component of the 26S proteasome binds on orphan member of the nuclear hormone receptor superfamily". J. Steroid Biochem. Mol. Biol. 56 (1-6 Spec No): 23–30. PMID 8603043.
  • Seeger M, Ferrell K, Frank R, Dubiel W (1997). "HIV-1 tat inhibits the 20 S proteasome and its 11 S regulator-mediated activation". J. Biol. Chem. 272 (13): 8145–8. PMID 9079628.
  • Tanahashi N, Suzuki M, Fujiwara T; et al. (1998). "Chromosomal localization and immunological analysis of a family of human 26S proteasomal ATPases". Biochem. Biophys. Res. Commun. 243 (1): 229–32. PMID 9473509.
  • Nakamura T, Tanaka T, Takagi H, Sato M (1998). "Cloning and heterogeneous in vivo expression of Tat binding protein-1 (TBP-1) in the mouse". Biochim. Biophys. Acta. 1399 (1): 93–100. PMID 9714759.
  • Madani N, Kabat D (1998). "An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein". J. Virol. 72 (12): 10251–5. PMID 9811770.
  • Simon JH, Gaddis NC, Fouchier RA, Malim MH (1998). "Evidence for a newly discovered cellular anti-HIV-1 phenotype". Nat. Med. 4 (12): 1397–400. doi:10.1038/3987. PMID 9846577.
  • Mulder LC, Muesing MA (2000). "Degradation of HIV-1 integrase by the N-end rule pathway". J. Biol. Chem. 275 (38): 29749–53. doi:10.1074/jbc.M004670200. PMID 10893419.
  • Zhang QH, Ye M, Wu XY; et al. (2001). "Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells". Genome Res. 10 (10): 1546–60. PMID 11042152.
  • Hartmann-Petersen R, Tanaka K, Hendil KB (2001). "Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking". Arch. Biochem. Biophys. 386 (1): 89–94. doi:10.1006/abbi.2000.2178. PMID 11361004.
  • Ishizuka T, Satoh T, Monden T; et al. (2001). "Human immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR". Mol. Endocrinol. 15 (8): 1329–43. PMID 11463857.
  • Dawson S, Apcher S, Mee M; et al. (2002). "Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome". J. Biol. Chem. 277 (13): 10893–902. doi:10.1074/jbc.M107313200. PMID 11779854.
  • Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002). "Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein". Nature. 418 (6898): 646–50. doi:10.1038/nature00939. PMID 12167863.
  • Huang X, Seifert U, Salzmann U; et al. (2002). "The RTP site shared by the HIV-1 Tat protein and the 11S regulator subunit alpha is crucial for their effects on proteasome function including antigen processing". J. Mol. Biol. 323 (4): 771–82. PMID 12419264.

Template:WikiDoc Sources