TAF4

Revision as of 15:14, 6 September 2012 by WikiBot (talk | contribs) (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


TAF4 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 135kDa
File:PBB Protein TAF4 image.jpg
PDB rendering based on 1h3o.
Available structures
PDB Ortholog search: Template:Homologene2PDBe PDBe, Template:Homologene2uniprot RCSB
Identifiers
Symbols TAF4 ; FLJ41943; TAF2C; TAF2C1; TAF4A; TAFII130; TAFII135
External IDs Template:OMIM5 Template:MGI HomoloGene55723
RNA expression pattern
File:PBB GE TAF4 213090 s at tn.png
File:PBB GE TAF4 208545 x at tn.png
More reference expression data
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

TAF4 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 135kDa, also known as TAF4, is a human gene.[1]

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes one of the larger subunits of TFIID that has been shown to potentiate transcriptional activation by retinoic acid, thyroid hormone and vitamin D3 receptors. In addition, this subunit interacts with the transcription factor CREB, which has a glutamine-rich activation domain, and binds to other proteins containing glutamine-rich regions. Aberrant binding to this subunit by proteins with expanded polyglutamine regions has been suggested as one of the pathogenetic mechanisms underlying a group of neurodegenerative disorders referred to as polyglutamine diseases.[1]

References

  1. 1.0 1.1 "Entrez Gene: TAF4 TAF4 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 135kDa".

Further reading

  • Zhou Q, Sharp PA (1995). "Novel mechanism and factor for regulation by HIV-1 Tat". EMBO J. 14 (2): 321–8. PMID 7835343.
  • Parada CA, Yoon JB, Roeder RG (1995). "A novel LBP-1-mediated restriction of HIV-1 transcription at the level of elongation in vitro". J. Biol. Chem. 270 (5): 2274–83. PMID 7836461.
  • Ou SH, Garcia-Martínez LF, Paulssen EJ, Gaynor RB (1994). "Role of flanking E box motifs in human immunodeficiency virus type 1 TATA element function". J. Virol. 68 (11): 7188–99. PMID 7933101.
  • Kashanchi F, Piras G, Radonovich MF; et al. (1994). "Direct interaction of human TFIID with the HIV-1 transactivator tat". Nature. 367 (6460): 295–9. doi:10.1038/367295a0. PMID 8121496.
  • Wang Z, Morris GF, Rice AP; et al. (1996). "Wild-type and transactivation-defective mutants of human immunodeficiency virus type 1 Tat protein bind human TATA-binding protein in vitro". J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 12 (2): 128–38. PMID 8680883.
  • Pendergrast PS, Morrison D, Tansey WP, Hernandez N (1996). "Mutations in the carboxy-terminal domain of TBP affect the synthesis of human immunodeficiency virus type 1 full-length and short transcripts similarly". J. Virol. 70 (8): 5025–34. PMID 8764009.
  • Kashanchi F, Khleif SN, Duvall JF; et al. (1996). "Interaction of human immunodeficiency virus type 1 Tat with a unique site of TFIID inhibits negative cofactor Dr1 and stabilizes the TFIID-TFIIA complex". J. Virol. 70 (8): 5503–10. PMID 8764062.
  • Zhou Q, Sharp PA (1996). "Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV-1 Tat". Science. 274 (5287): 605–10. PMID 8849451.
  • Tanese N, Saluja D, Vassallo MF; et al. (1997). "Molecular cloning and analysis of two subunits of the human TFIID complex: hTAFII130 and hTAFII100". Proc. Natl. Acad. Sci. U.S.A. 93 (24): 13611–6. PMID 8942982.
  • García-Martínez LF, Ivanov D, Gaynor RB (1997). "Association of Tat with purified HIV-1 and HIV-2 transcription preinitiation complexes". J. Biol. Chem. 272 (11): 6951–8. PMID 9054383.
  • Mengus G, May M, Carré L; et al. (1997). "Human TAF(II)135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells". Genes Dev. 11 (11): 1381–95. PMID 9192867.
  • Saluja D, Vassallo MF, Tanese N (1998). "Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators". Mol. Cell. Biol. 18 (10): 5734–43. PMID 9742090.
  • Brand M, Yamamoto K, Staub A, Tora L (1999). "Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction". J. Biol. Chem. 274 (26): 18285–9. PMID 10373431.
  • Inada A, Someya Y, Yamada Y; et al. (1999). "The cyclic AMP response element modulator family regulates the insulin gene transcription by interacting with transcription factor IID". J. Biol. Chem. 274 (30): 21095–103. PMID 10409662.
  • Gangloff YG, Werten S, Romier C; et al. (2000). "The human TFIID components TAF(II)135 and TAF(II)20 and the yeast SAGA components ADA1 and TAF(II)68 heterodimerize to form histone-like pairs". Mol. Cell. Biol. 20 (1): 340–51. PMID 10594036.
  • Brand M, Moggs JG, Oulad-Abdelghani M; et al. (2001). "UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation". EMBO J. 20 (12): 3187–96. doi:10.1093/emboj/20.12.3187. PMID 11406595.
  • Martinez E, Palhan VB, Tjernberg A; et al. (2001). "Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo". Mol. Cell. Biol. 21 (20): 6782–95. doi:10.1128/MCB.21.20.6782-6795.2001. PMID 11564863.
  • Guermah M, Tao Y, Roeder RG (2001). "Positive and negative TAF(II) functions that suggest a dynamic TFIID structure and elicit synergy with traps in activator-induced transcription". Mol. Cell. Biol. 21 (20): 6882–94. doi:10.1128/MCB.21.20.6882-6894.2001. PMID 11564872.
  • Felinski EA, Quinn PG (2001). "The coactivator dTAF(II)110/hTAF(II)135 is sufficient to recruit a polymerase complex and activate basal transcription mediated by CREB". Proc. Natl. Acad. Sci. U.S.A. 98 (23): 13078–83. doi:10.1073/pnas.241337698. PMID 11687654.
  • Deloukas P, Matthews LH, Ashurst J; et al. (2002). "The DNA sequence and comparative analysis of human chromosome 20". Nature. 414 (6866): 865–71. doi:10.1038/414865a. PMID 11780052.

Template:WikiDoc Sources