Transthyretin
Transthyretin (TTR) is a serum and cerebrospinal fluid carrier of the thyroid hormone thyroxine (T4).
TTR was originally called prealbumin[1] because it ran faster than albumins on electrophoresis gels.
Binding affinities
It functions in concert with two other thyroid hormone binding proteins:
Protein | Binding strength | Plasma concentration |
thyroxine-binding globulin (TBG) | highest | lowest |
transthyretin (TTR) | lower | higher |
albumins | poorest | much higher |
TTR also acts as a carrier of retinol (vitamin A) through an association with retinol binding protein (RBP).
Numerous other small molecules are known to bind in the thyroxine binding sites, including many natural products (such as resveratrol), drugs (diflunisal, flufenamic acid), and toxins PCB. Since TTR binds promiscuously to many aromatic compounds, and generally does not bind T4 in serum, there is speculation that TTR's "true function" is to generally sweep up toxic and foreign compounds in the blood stream.
Structure
TTR is a 55 kDa homotetramer with a dimer of dimers configuration that is synthesized in the liver, choroid plexus and retinal pigment epithelium. Each monomer is a 127 residue polypeptide rich in beta sheet structure. Association of two monomers forms an extended beta sandwich. Further association of another identical set of monomers produces the homotetrameric structure. The two thyroxine binding sites per tetramer sit at the interface between the latter set of dimers.
Role in disease
TTR is known to be associated with the amyloid diseases senile systemic amyloidosis (SSA), familial amyloid polyneuropathy (FAP), and familial amyloid cardiomyopathy (FAC).
TTR is able to deposit as amyloid fibrils, causing neurodegeneration and organ failure. Both point mutations of TTR and wild-type protein are known to deposit as amyloid. A replacement of valine by methionine at position 30 (TTR V30M) is the mutation most commonly found in FAP. A position 122 replacement of valine by isoleucine (TTR V122I) is carried by 3.9% of the African-American population, and is the most common cause of FAC. SSA is estimated to effect over 25% of the population over age 80. Severity of disease varies greatly by mutation, with some mutations causing disease in the first or second decade of life, and others being completely benign. Deposition of TTR amyloid is extracellular. Treatment of TTR amyloid disease is currently limited to liver transplantation as a crude form of gene therapy. Because TTR is primarily produced in the liver, replacement of a liver containing a mutant TTR gene with a normal gene is able to replace the mutant TTR in the body. Certain mutations, however, have been found to have CNS involvement, and due to the blood brain barrier, do not respond to this therapy.
TTR is thought to have beneficial side, however, in binding to the infamous beta-amyloid protein, thereby preventing beta-amyloid's natural tendency to accumulate into the plaques associated with the early stages of Alzheimer's Disease. Preventing plaque formation is thought to enable a cell to rid itself of this otherwise toxic protein form and, thus, help prevent and maybe even treat the disease.
As with most amyloid diseases, it is still unclear whether the deposition of amyloid is the cause of the disease or a correlate of some upstream toxic process. With TTR, it is known that dissociation of the tetramer must occur, followed by misfolding events that ultimately result in amyloid fibrils. New research results point to the oligomers (consisting of max. 8 monomers) to generate the observed cell toxicity.
Transthyretin level in cerebrospinal fluid has also been found to be lower in patients with schizophrenia.[2] The reduced level of transthyretin in the CSF may indicate a lower thyroxine transport in brains of patients with schizophrenia.
Because transthyretin is made in part by the choroid plexus, it can be used as an immunohistochemical marker for choroid plexus papillomas.[citation needed]
Nutritional Assessment
In medicine, nutritional status (more specifically 'visceral protein status') can be assessed by measuring concentrations of prealbumin in the plasma. Although other transport proteins, such as Albumin or Transferrin, can also be used, prealbumin is a more reliable choice because of its shorter half life. [3]
Protein | Half-Life (days) | Normal Levels | Malnutrition | ||
mild | moderate | severe | |||
Prealbumin | 2-4 | 15.7-29.6 mg/dL | 12-15 | 8-10 | <8 |
References
- ↑ Prealbumin at the US National Library of Medicine Medical Subject Headings (MeSH)
- ↑ Disease Biomarkers in Cerebrospinal Fluid of Patients with First-Onset Psychosis ,Huang JTJ, Leweke FM, Oxley D, Wang L, Harris N, et al. (2006) PLoS Med 3(11): e428 PMID 17090210
- ↑ Essentials of General Surgery, 4th Ed.
Further reading
- Sakaki Y, Yoshioka K, Tanahashi H; et al. (1990). "Human transthyretin (prealbumin) gene and molecular genetics of familial amyloidotic polyneuropathy". Mol. Biol. Med. 6 (2): 161–8. PMID 2693890.
- Saraiva MJ (1995). "Transthyretin mutations in health and disease". Hum. Mutat. 5 (3): 191–6. doi:10.1002/humu.1380050302. PMID 7599630.
- Ingenbleek Y, Young V (1994). "Transthyretin (prealbumin) in health and disease: nutritional implications". Annu. Rev. Nutr. 14: 495–533. doi:10.1146/annurev.nu.14.070194.002431. PMID 7946531.
- Hesse A, Altland K, Linke RP; et al. (1994). "Cardiac amyloidosis: a review and report of a new transthyretin (prealbumin) variant". British heart journal. 70 (2): 111–5. PMID 8038017.
- Blanco-Jerez CR, Jiménez-Escrig A, Gobernado JM; et al. (1998). "Transthyretin Tyr77 familial amyloid polyneuropathy: a clinicopathological study of a large kindred". Muscle Nerve. 21 (11): 1478–85. PMID 9771673.