Zanamivir microbiology

Revision as of 23:51, 2 January 2014 by Gerald Chi (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Zanamivir
RELENZA® FDA Package Insert
Description
Clinical Pharmacology
Microbiology
Indications and Usage
Contraindications
Warnings and Precautions
Adverse Reactions
Overdosage
Clinical Studies
Dosage and Administration
Directions for Use
How Supplied
Labels and Packages

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sheng Shi, M.D. [2]

Microbiology

Antiviral Activity: The antiviral activity of zanamivir against laboratory and clinical isolates of influenza virus was determined in cell culture assays. The concentrations of zanamivir required for inhibition of influenza virus were highly variable depending on the assay method used and virus isolate tested. The 50% and 90% effective concentrations (EC50 and EC90) of zanamivir were in the range of 0.005 to 16.0 μM and 0.05 to >100 μM, respectively (1 μM = 0.33 mcg/mL). The relationship between the cell culture inhibition of influenza virus by zanamivir and the inhibition of influenza virus replication in humans has not been established.

Resistance: influenza virus with reduced susceptibility to zanamivir have been selected in cell culture by multiple passages of the virus in the presence of increasing concentrations of the drug. Genetic analysis of these viruses showed that the reduced susceptibility in cell culture to zanamivir is associated with mutations that result in amino acid changes in the viral neuraminidase or viral hemagglutinin or both. Resistance mutations selected in cell culture which result in neuraminidase amino acid substitutions include E119G/A/D and R292K. Mutations selected in cell culture in hemagglutinin include: K68R, G75E, E114K, N145S, S165N, S186F, N199S, and K222T.

In an immunocompromised patient infected with influenza B virus, a variant virus emerged after treatment with an investigational nebulized solution of zanamivir for 2 weeks. Analysis of this variant showed a hemagglutinin substitution (T198I) which resulted in a reduced affinity for human cell receptors, and a substitution in the neuraminidase active site (R152K) which reduced the enzyme’s activity to zanamivir by 1,000-fold. Insufficient information is available to characterize the risk of emergence of zanamivir resistance in clinical use.

Cross-Resistance: Cross-resistance has been observed between some zanamivir-resistant and some oseltamivir-resistant influenza virus mutants generated in cell culture. However, some of the in cell culture zanamivir-induced resistance mutations, E119G/A/D and R292K, occurred at the same neuraminidase amino acid positions as in the clinical isolates resistant to oseltamivir, E119V and R292K. No trials have been performed to assess risk of emergence of cross-resistance during clinical use.

Influenza Vaccine Interaction Trial: An interaction trial (n = 138) was conducted to evaluate the effects of zanamivir (10 mg once daily) on the serological response to a single dose of trivalent inactivated influenza vaccine, as measured by hemagglutination inhibition titers. There was no difference in hemagglutination inhibition antibody titers at 2 weeks and 4 weeks after vaccine administration between zanamivir and placebo recipients.

Influenza Challenge Trials: Antiviral activity of zanamivir was supported for infection with influenza A virus, and to a more limited extent for infection with influenza B virus, by Phase I trials in volunteers who received intranasal inoculations of challenge strains of influenza virus, and received an intranasal formulation of zanamivir or placebo starting before or shortly after viral inoculation.[1]

References

  1. "http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021036s019lbl.pdf" (PDF). External link in |title= (help)

Adapted from the FDA Package Insert.