Itraconazole microbiology
MICROBIOLOGY
Mechanism of Action
In vitro studies have demonstrated that itraconazole inhibits the cytochrome P450-dependent synthesis of ergosterol, which is a vital component of fungal cell membranes.
Activity In Vitro and In Vivo
Itraconazole exhibits in vitro activity against Blastomyces dermatitidis, Histoplasma capsulatum, Histoplasma duboisii, Aspergillus flavus, Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. Itraconazole also exhibits varying in vitro activity against Sporothrix schenckii, Trichophytonspecies, Candida krusei, and other Candida species.
Candida krusei, Candida glabrata and Candida tropicalis are generally the least susceptible Candida species, with some isolates showing unequivocal resistance to itraconazole in vitro. Itraconazole is not active against Zygomycetes (e.g., Rhizopus spp., Rhizomucor spp., Mucor spp. and Absidia spp.),Fusarium spp., Scedosporium spp. and Scopulariopsis spp.
The bioactive metabolite, hydroxyitraconazole, has not been evaluated against Histoplasma capsulatum, Blastomyces dermatitidis, Zygomycete, Fusariumspp., Scedosporium spp. and Scopulariopsis spp. Correlation between minimum inhibitory concentration (MIC) results in vitro and clinical outcome has yet to be established for azole antifungal agents.
Itraconazole administered orally was active in a variety of animal models of fungal infection using standard laboratory strains of fungi. Fungistatic activity has been demonstrated against disseminated fungal infections caused by Blastomyces dermatitidis, Histoplasma duboisii, Aspergillus fumigatus, Coccidioides immitis, Cryptococcus neoformans, Paracoccidioides brasiliensis, Sporothrix schenckii, Trichophyton rubrum, and Trichophyton mentagrophytes.
Itraconazole administered at 2.5 mg/kg and 5 mg/kg via the oral and parenteral routes increased survival rates and sterilized organ systems in normal and immunosuppressed guinea pigs with disseminated Aspergillus fumigatus infections. Oral itraconazole administered daily at 40 mg/kg and 80 mg/kg increased survival rates in normal rabbits with disseminated disease and in immunosuppressed rats with pulmonary Aspergillus fumigatus infection, respectively. Itraconazole has demonstrated antifungal activity in a variety of animal models infected with Candida albicans and other Candida species.
Resistance
Isolates from several fungal species with decreased susceptibility to itraconazole have been isolated in vitro and from patients receiving prolonged therapy.
Several in vitro studies have reported that some fungal clinical isolates, including Candida species, with reduced susceptibility to one azole antifungal agent may also be less susceptible to other azole derivatives. The finding of cross-resistance is dependent on a number of factors, including the species evaluated, its clinical history, the particular azole compounds compared, and the type of susceptibility test that is performed. The relevance of these in vitrosusceptibility data to clinical outcome remains to be elucidated.
Candida krusei, Candida glabrata and Candida tropicalis are generally the least susceptible Candida species, with some isolates showing unequivocal resistance to itraconazole in vitro.
Itraconazole is not active against Zygomycetes (e.g., Rhizopus spp., Rhizomucor spp., Mucor spp. and Absidia spp.), Fusarium spp., Scedosporium spp. and Scopulariopsis spp.
Studies (both in vitro and in vivo) suggest that the activity of amphotericin B may be suppressed by prior azole antifungal therapy. As with other azoles, itraconazole inhibits the 14C-demethylation step in the synthesis of ergosterol, a cell wall component of fungi. Ergosterol is the active site for amphotericin B. In one study the antifungal activity of amphotericin B against Aspergillus fumigatus infections in mice was inhibited by ketoconazole therapy. The clinical significance of test results obtained in this study is unknown.
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ahmed Zaghw, M.D. [2]
.[1]
References
Adapted from the FDA Package Insert.