Oseltamivir microbiology

Revision as of 15:13, 8 January 2014 by ShiSheng (talk | contribs) (Created page with "__NOTOC__ {{Oseltamivir}} {{CMG}}; {{AE}} {{SS}} ==Microbiology== ===Antiviral Activity=== The antiviral activity and neuraminidase inhibitory activity of oseltamivir carbo...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Oseltamivir
TAMIFLU® FDA Package Insert
Description
Clinical Pharmacology
Microbiology
Indications and Usage
Contraindications
Warnings and Precautions
Adverse Reactions
Drug Interactions
Overdosage
Dosage and Administration
How Supplied
Labels and Packages

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sheng Shi, M.D. [2]

Microbiology

Antiviral Activity

The antiviral activity and neuraminidase inhibitory activity of oseltamivir carboxylate against laboratory strains and clinical isolates of influenza virus was determined in cell culture and biochemical assays. The concentrations of oseltamivir carboxylate required for inhibition of influenza virus in cell culture were highly variable depending on the assay method used and the virus tested. The 50% and 90% effective concentrations (EC50 and EC90) were in the range of 0.0008 µM to >35 µM and 0.004 µM to >100 µM, respectively (1 µM=0.284 µg/mL). The median IC50 values of oseltamivir against influenza A/H1N1, influenza A/H3N2, and influenza B clinical isolates were 2.5 nM (range 0.93-4.16 nM, N=74), 0.96 nM (range 0.13-7.95 nM, N=774), and 60 nM (20-285 nM, N=256), respectively, in a neuraminidase assay with a fluorescently labeled MUNANA substrate. The relationship between the antiviral activity in cell culture, inhibitory activity in the neuraminidase assay, and the inhibition of influenza virus replication in humans has not been established.

Resistance

influenza A virus isolates with reduced susceptibility to oseltamivir carboxylate have been recovered by serial passage of virus in cell culture in the presence of increasing concentrations of oseltamivir carboxylate, from clinical isolates collected during treatment with oseltamivir, and from viral isolates sampled during community surveillance studies. Reduced susceptibility of influenza virus to inhibition by oseltamivir carboxylate may be conferred by amino acid substitutions in the viral neuraminidase and/or hemagglutinin proteins. Changes in the viral neuraminidase that have been associated with reduced susceptibility to oseltamivir carboxylate are summarized in Table 8. Hemagglutinin substitutions associated with oseltamivir resistance include A28T and R124M in influenza A H3N2 and H154Q in H1N9, a reassortant human/avian virus.

Selection of influenza A viruses resistant to oseltamivir can occur at higher frequencies in children. The incidence of oseltamivir treatment-associated resistance in pediatric treatment studies has been detected at rates of 27% to 37% and 3% to 18% (3/11 to 7/19 and 1/34 to 9/50 post-treatment isolates, respectively) for influenza A/H1N1 and influenza A/H3N2, respectively. The frequency of resistance selection to oseltamivir and the prevalence of such resistant virus vary seasonally and geographically.

Circulating seasonal influenza strains expressing neuraminidase resistance-associated substitutions have been observed in individuals who have not received oseltamivir treatment. The oseltamivir resistance-associated substitution H275Y was found in >99% of US circulating 2008 H1N1 influenza isolates. The 2009 H1N1 influenza ("swine flu") was almost uniformly susceptible to oseltamivir. Prescribers should consider available information from the CDC on influenza drug susceptibility patterns and treatment effects when deciding whether to use TAMIFLU.

Cross-resistance

Cross-resistance between oseltamivir and zanamivir has been observed in neuraminidase biochemical assays. The H275Y (N1 numbering) or N294S (N2 numbering) oseltamivir resistance-associated substitutions observed in the N1 neuraminidase subtype, and the E119V or N294S oseltamivir resistance-associated substitutions observed in the N2 subtype (N2 numbering), are associated with reduced susceptibility to oseltamivir but not zanamivir. The Q136K and K150T zanamivir resistance-associated substitutions observed in N1 neuraminidase, or the S250G zanamivir resistance-associated substitutions observed in influenza B, confer reduced susceptibility to zanamivir but not oseltamivir. The R292K oseltamivir resistance-associated substitution observed in N2, and the I222T, D198E/N, R371K, or G402S oseltamivir resistance-associated substitutions observed in influenza B neuraminidase, confer reduced susceptibility to both oseltamivir and zanamivir. In general, amino acid substitutions at neuraminidase catalytic residues confer cross-resistance to other neuraminidase inhibitors while substitutions at framework residues may or may not confer cross-resistance.

No single amino acid substitution has been identified that could confer cross-resistance between the neuraminidase inhibitor class (oseltamivir, zanamivir) and the M2 ion channel inhibitor class (amantadine, rimantadine). However, a virus may carry a neuraminidase inhibitor associated substitution in neuraminidase and an M2 ion channel inhibitor associated substitution in M2 and may therefore be resistant to both classes of inhibitors. The clinical relevance of phenotypic cross-resistance evaluations has not been established.

Immune Response

No influenza vaccine/oseltamivir interaction study has been conducted. In studies of naturally acquired and experimental influenza, treatment with TAMIFLU did not impair normal humoral antibody response to infection.[1]

References

  1. "TAMIFLU (OSELTAMIVIR PHOSPHATE) POWDER, FOR SUSPENSION TAMIFLU (OSELTAMIVIR PHOSPHATE) CAPSULE [GENENTECH, INC.]". Retrieved 8 January 2014.

Adapted from the FDA Package Insert.