Norfloxacin microbiology
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sheng Shi, M.D. [2]
Microbiology
Drug Resistance
Resistance to norfloxacin due to spontaneous mutation in vitro is a rare occurrence (range: 10-9 to 10-12 cells). Resistant organisms have emerged during therapy with norfloxacin in less than 1% of patients treated. Organisms in which development of resistance is greatest are the following:
Acinetobacter spp.
Enterococcus spp.
For this reason, when there is a lack of satisfactory clinical response, repeat culture and susceptibility testing should be done. Nalidixic acid-resistant organisms are generally susceptible to norfloxacin in vitro; however, these organisms may have higher minimum inhibitory concentrations (MICs) to norfloxacin than nalidixic acid-susceptible strains. There is generally no cross-resistance between norfloxacin and other classes of antibacterial agents. Therefore, norfloxacin may demonstrate activity against indicated organisms resistant to some other antimicrobial agents including the aminoglycosides, penicillins, cephalosporins, tetracyclines, macrolides, and sulfonamides, including combinations of sulfamethoxazole and trimethoprim. Antagonism has been demonstrated in vitro between norfloxacin and nitrofurantoin.
Activity in vitro and in vivo
Norfloxacin has in vitro activity against a broad range of gram-positive and gram-negative aerobic bacteria.
Norfloxacin has been shown to be active against most strains of the following microorganisms both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section.
Gram-positive aerobes
Enterococcus faecalis
Gram-negative aerobes
The following in vitro data are available, but their clinical significance is unknown.
Norfloxacin exhibits in vitro MICs of ≤4 μg/mL against most (≥90%) strains of the following microorganisms; however, the safety and effectiveness of norfloxacin in treating clinical infections due to these microorganisms have not been established in adequate and well-controlled clinical trials.
Gram-negative aerobes
Other
NOROXIN is not generally active against obligate anaerobes.
Norfloxacin has not been shown to be active against Treponema pallidum (see WARNINGS).
Susceptibility Tests
Dilution Techniques
Quantitative methods are used to determine antimicrobial MICs. These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized procedure. Standardized procedures are based on a dilution method{1} (broth, agar, or microdilution) or equivalent with standardized inoculum concentrations and standardized concentrations of norfloxacin powder. The MIC values should be interpreted according to the criteria outlined in Table 1.
Diffusion Techniques
Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure{2} requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 10-μg norfloxacin to test the susceptibility of microorganisms to norfloxacin. Reports from the laboratory providing results of the standard single-disk susceptibility test with a 10-μg norfloxacin disk should be interpreted according to the criteria outlined in Table 1. Interpretation involves correlation of the diameter obtained in the disk test with the MIC for norfloxacin.
A report of "Susceptible" indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of "Intermediate" indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of "Resistant" indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.
Quality Control
Standardized susceptibility test procedures require the use of laboratory control microorganisms to control the technical aspects of the laboratory procedures. Standard norfloxacin powder should provide the MIC values outlined in Table 2. For the diffusion techniques, the 10-μg norfloxacin disk should provide the zone diameters outlined in Table 2.
References
- ↑ "NOROXIN (NORFLOXACIN) TABLET, FILM COATED [MERCK SHARP & DOHME CORP.]". Retrieved 8 January 2014.
Adapted from the FDA Package Insert.