Valproic acid capsule delayed release clinical pharmacology

Revision as of 23:02, 6 February 2014 by Gerald Chi (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Valproic acid
DEPAKENE® FDA Package Insert
Indications and Usage
Dosage and Administration
Dosage Forms and Strengths
Contraindications
Warnings and Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Overdosage
Description
Clinical Pharmacology
Nonclinical Toxicology
Clinical Studies
How Supplied/Storage and Handling
Patient Counseling Information
Labels and Packages
STAVZOR® FDA Package Insert
Indications and Usage
Dosage and Administration
Dosage Forms and Strengths
Contraindications
Warnings and Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Overdosage
Description
Clinical Pharmacology
Nonclinical Toxicology
Clinical Studies
How Supplied/Storage and Handling
Patient Counseling Information
Labels and Packages
Clinical Trials on Valproic acid
ClinicalTrials.gov

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Clinical Pharmacology

12.2 Pharmacodynamics

Valproic acid dissociates to the valproate ion in the gastrointestinal tract. The mechanisms by which valproate exerts its therapeutic effects have not been established. It has been suggested that its activity in epilepsy is related to increased brain concentrations of gamma-aminobutyric acid (GABA).

12.3 Pharmacokinetics

Absorption/Bioavailability

A single-dose randomized crossover study compared Stavzor 500-mg strength capsules to 500-mg Depakote delayed-release tablets. These studies demonstrated that the 2 products had similar plasma concentration-time profiles under fasted conditions in terms of valproic acid, although the median Tmax occurred earlier with STAVZOR (2.0 hrs versus 3.5 hrs). Co-administration with food increased the Tmax of Stavzor (2.0 hrs without food and approximately 4.8 hours with food), and resulted in a 23% decrease in Cmax of valproic acid, although there was no change in systemic exposure (AUC).

Although the rate of valproate ion absorption may vary with the conditions of use (eg. fasting or postprandial), these differences should be of minor clinical importance under the steady-state conditions achieved in chronic use in the treatment of epilepsy. However, it is possible that differences among the various valproate products in Tmax and Cmax could be important upon initiation of treatment. For example, in single dose studies, the effect of feeding had an influence on the rate of absorption of the capsule (increase in Tmax from 2.3 to 6.1 hours). While the absorption rate from the GI tract and fluctuation in valproate plasma concentrations vary with dosing regimen, the efficacy of valproate as an anticonvulsant in chronic use is unlikely to be affected. Experience employing dosing regimens from once-a-day to 4-times-a-day, as well as studies in primate epilepsy models involving constant rate infusion, indicates that total daily systemic bioavailability (extent of absorption) is the primary determinant of seizure control and that differences in the ratios of plasma peak to trough concentrations are inconsequential from a practical clinical standpoint. Whether or not rate of absorption influences the efficacy of valproate as an antimanic or antimigraine agent is unknown. Co-administration of oral valproate products with food should cause no clinical problems in the management of patients with epilepsy [see Dosage and Administration (2.2)] .

An in vitro study evaluating dissolution of valproic acid showed earlier dissolution in the presence of ethanol than in the absence of ethanol. This has not been studied in humans. However, there is a potential for an earlier Tmax and therefore a higher Cmax when valproic acid is given with alcohol.

Any changes in dosage administration, or the addition or discontinuance of concomitant drugs, should ordinarily be accompanied by close monitoring of clinical status and valproate plasma concentrations.

Distribution
Protein Binding

The plasma protein binding of valproate is concentration dependent and the free fraction increases from approximately 10% at 40 mcg/mL to 18.5% at 130 mcg/mL. Protein binding of valproate is reduced in the elderly, in patients with chronic hepatic diseases, in patients with renal impairment, and in the presence of other drugs (eg. aspirin). Conversely, valproate may displace certain protein-bound drugs (eg. phenytoin, carbamazepine, warfarin, and tolbutamide). [See Drug Interactions (7) for more detailed information on the pharmacokinetic interactions of valproate with other drugs].

CNS Distribution

Valproate concentrations in cerebrospinal fluid (CSF) approximate unbound concentrations in plasma (about 10% of total concentration).

Metabolism

Valproate is metabolized almost entirely by the liver. In adult patients on monotherapy, 30-50% of an administered dose appears in urine as a glucuronide conjugate. Mitochondrial β-oxidation is the other major metabolic pathway, typically accounting for over 40% of the dose. Usually, less than 15-20% of the dose is eliminated by other oxidative mechanisms. Less than 3% of an administered dose is excreted unchanged in urine.

The relationship between dose and total valproate concentration is nonlinear; concentration does not increase proportionally with the dose, but rather, increases to a lesser extent due to saturable plasma protein binding. The kinetics of unbound drug are linear.

Elimination

Mean plasma clearance and volume of distribution for total valproate are 0.56 L/hr/1.73 m2 and 11 L/1.73 m2, respectively. Mean plasma clearance and volume of distribution for free valproate are 4.6 L/hr/1.73 m2 and 92 L/1.73 m2. Mean terminal half-life for valproate monotherapy ranged from 9 to 16 hours following oral dosing regimens of 250 to 1000 mg.

The estimates cited apply primarily to patients who are not taking drugs that affect hepatic metabolizing enzyme systems. For example, patients taking enzyme-inducing antiepileptic drugs (carbamazepine, phenytoin, and phenobarbital) will clear valproate more rapidly. Because of these changes in valproate clearance, monitoring of antiepileptic concentrations should be intensified whenever concomitant antiepileptics are introduced or withdrawn.

Special Populations
Effect of Age
Neonates

Children within the first 2 months of life have a markedly decreased ability to eliminate valproate compared to older children and adults. This is a result of reduced clearance (perhaps due to delay in development of glucuronosyltransferase and other enzyme systems involved in valproate elimination) as well as increased volume of distribution (in part due to decreased plasma protein binding). For example, in one study, the half-life in children under 10 days ranged from 10 to 67 hours compared to a range of 7 to 13 hours in children greater than 2 months.

Children

Pediatric patients (i.e., between 3 months and 10 years) have 50% higher clearances expressed on weight (i.e., mL/min/kg) than do adults. Over the age of 10 years, children have pharmacokinetic parameters that approximate those of adults.

Elderly

The capacity of elderly patients (age range: 68 to 89 years) to eliminate valproate has been shown to be reduced compared to younger adults (age range: 22 to 26). Intrinsic clearance is reduced by 39%; the free fraction is increased by 44%. Accordingly, the initial dosage should be reduced in the elderly [see Dosage and Administration (2.4)] .

Effect of Gender

There are no differences in the body surface area adjusted unbound clearance between males and females (4.8±0.17 and 4.7±0.07 L/hr per 1.73 m2, respectively).

Effect of Race

The effects of race on the kinetics of valproate have not been studied.

Effect of Disease
Liver Disease

Liver disease impairs the capacity to eliminate valproate. In one study, the clearance of free valproate was decreased by 50% in 7 patients with cirrhosis and by 16% in 4 patients with acute hepatitis, compared with 6 healthy subjects. In that study, the half-life of valproate was increased from 12 to 18 hours. Liver disease is also associated with decreased albumin concentrations and larger unbound fractions (2- to 2.6-fold increase) of valproate. Accordingly, monitoring of total concentrations may be misleading since free concentrations may be substantially elevated in patients with hepatic disease whereas total concentrations may appear to be normal [See Boxed Warning, Contraindications (4), Warnings and Precautions (5.1)] .

Renal Disease

A slight reduction (27%) in the unbound clearance of valproate has been reported in patients with renal failure (creatinine clearance < 10 mL/minute); however, hemodialysis typically reduces valproate concentrations by about 20%. Therefore, no dosage adjustment appears to be necessary in patients with renal failure. Protein binding in these patients is substantially reduced; thus, monitoring total concentrations may be misleading.

Plasma Levels and Clinical Effect

The relationship between plasma concentration and clinical response is not well documented. One contributing factor is the nonlinear, concentration dependent protein binding of valproate which affects the clearance of the drug. Thus, monitoring of total serum valproate cannot provide a reliable index of the bioactive valproate species.

For example, because the plasma protein binding of valproate is concentration dependent, the free fraction increases from approximately 10% at 40 mcg/mL to 18.5% at 130 mcg/mL. Higher than expected free fractions occur in the elderly, in hyperlipidemic patients, and in patients with hepatic and renal diseases.

Epilepsy

The therapeutic range in epilepsy is commonly considered to be 50 to 100 mcg/mL of total valproate, although some patients may be controlled with lower or higher plasma concentrations.

Mania

In placebo-controlled clinical trials of acute mania, patients were dosed to clinical response with trough plasma concentrations between 50 and 125 mcg/mL [see Dosage and Administration (2.1)] .[1]

References

  1. "STAVZOR (VALPROIC ACID) CAPSULE, DELAYED RELEASE STAVZOR ( VALPROIC ACID) CAPSULE, DELAYED RELEASE [NOVEN THERAPEUTICS, LLC]".

Adapted from the FDA Package Insert.