Venlafaxine clinical pharmacology

Revision as of 03:22, 10 February 2014 by ShiSheng (talk | contribs) (Created page with "__NOTOC__ {{Venlafaxine}} {{CMG}}; {{AE}} {{SS}} ==Clinical Pharmacology== ===Pharmacodynamics=== The mechanism of the antidepressant action of venlafaxine in humans is bel...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Venlafaxine
EFFEXOR XR® FDA Package Insert
Indications and Usage
Dosage and Administration
Dosage Forms and Strengths
Contraindications
Warnings and Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Overdosage
Description
Clinical Pharmacology
Nonclinical Toxicology
Clinical Studies
How Supplied/Storage and Handling
Patient Counseling Information
Labels and Packages
Clinical Trials on Venlafaxine
ClinicalTrials.gov

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sheng Shi, M.D. [2]

Clinical Pharmacology

Pharmacodynamics

The mechanism of the antidepressant action of venlafaxine in humans is believed to be associated with its potentiation of neurotransmitter activity in the CNS. Preclinical studies have shown that venlafaxine and its active metabolite, O-desmethylvenlafaxine (ODV), are potent inhibitors of neuronal serotonin and norepinephrine reuptake and weak inhibitors of dopamine reuptake. Venlafaxine and ODV have no significant affinity for muscarinic cholinergic, H1-histaminergic, or α1-adrenergic receptors in vitro. Pharmacologic activity at these receptors is hypothesized to be associated with the various anticholinergic, sedative, and cardiovascular effects seen with other psychotropic drugs. Venlafaxine and ODV do not possess monoamine oxidase (MAO) inhibitory activity.

Pharmacokinetics

Steady-state concentrations of venlafaxine and ODV in plasma are attained within 3 days of oral multiple dose therapy. Venlafaxine and ODV exhibited linear kinetics over the dose range of 75 to 450 mg/day. Mean±SD steady-state plasma clearance of venlafaxine and ODV is 1.3±0.6 and 0.4±0.2 L/h/kg, respectively; apparent elimination half-life is 5±2 and 11±2 hours, respectively; and apparent (steady-state) volume of distribution is 7.5±3.7 and 5.7±1.8 L/kg, respectively. Venlafaxine and ODV are minimally bound at therapeutic concentrations to plasma proteins (27% and 30%, respectively).

Absorption

Venlafaxine is well absorbed and extensively metabolized in the liver. O-desmethylvenlafaxine (ODV) is the only major active metabolite. On the basis of mass balance studies, at least 92% of a single oral dose of venlafaxine is absorbed. The absolute bioavailability of venlafaxine is about 45%.

Administration of Effexor XR (150 mg q24 hours) generally resulted in lower Cmax (150 ng/mL for venlafaxine and 260 ng/mL for ODV) and later Tmax (5.5 hours for venlafaxine and 9 hours for ODV) than for Effexor (immediate release) [Cmax's for immediate release 75 mg q12 hours were 225 ng/mL for venlafaxine and 290 ng/mL for ODV; Tmax's were 2 hours for venlafaxine and 3 hours for ODV]. When equal daily doses of venlafaxine were administered as either an immediate release tablet or the extended-release capsule, the exposure to both venlafaxine and ODV was similar for the two treatments, and the fluctuation in plasma concentrations was slightly lower with the Effexor XR capsule. Effexor XR, therefore, provides a slower rate of absorption, but the same extent of absorption compared with the immediate release tablet.

Food did not affect the bioavailability of venlafaxine or its active metabolite, ODV. Time of administration (AM vs PM) did not affect the pharmacokinetics of venlafaxine and ODV from the 75 mg Effexor XR capsule.

Metabolism and Excretion

Following absorption, venlafaxine undergoes extensive presystemic metabolism in the liver, primarily to ODV, but also to N-desmethylvenlafaxine, N,O-didesmethylvenlafaxine, and other minor metabolites. In vitro studies indicate that the formation of ODV is catalyzed by CYP2D6; this has been confirmed in a clinical study showing that patients with low CYP2D6 levels (“poor metabolizers”) had increased levels of venlafaxine and reduced levels of ODV compared to people with normal CYP2D6 (“extensive metabolizers”). The differences between the CYP2D6 poor and extensive metabolizers, however, are not expected to be clinically important because the sum of venlafaxine and ODV is similar in the two groups and venlafaxine and ODV are pharmacologically approximately equiactive and equipotent.

Approximately 87% of a venlafaxine dose is recovered in the urine within 48 hours as unchanged venlafaxine (5%), unconjugated ODV (29%), conjugated ODV (26%), or other minor inactive metabolites (27%). Renal elimination of venlafaxine and its metabolites is thus the primary route of excretion.[1]

References

  1. "EFFEXOR XR (VENLAFAXINE HYDROCHLORIDE) CAPSULE, EXTENDED RELEASE [WYETH PHARMACEUTICALS COMPANY, A SUBSIDIARY OF PFIZER INC.]". Retrieved 7 February 2014.