Mycobacterium abscessus
Mycobacterium abscessus | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scientific classification | ||||||||||||||
| ||||||||||||||
Binomial name | ||||||||||||||
Mycobacterium abscessus Kusonoki and Ezaki 1992 ATCC 19977 |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Synonyms and keywords: M. abcessus
Overview
Mycobacterium abscessus is a rapidly growing mycobacterium that is a common water contaminant. It was until recently (1992) thought to be a subspecies of Mycobacterium chelonae. M. abcessus can cause chronic lung disease, post-traumatic wound infections, and disseminated cutaneous diseases, mostly in patients with suppressed immune systems.
Pathophysiology
Microscopy
- Gram-positive, nonmotile and acid-fast rods (1.0-2.5µm x 0.5µm).
Colony characteristics
- Colonies on Löwenstein-Jensen media may occur as smooth as well as rough, white or greyish and nonphotochromogenic.
Physiology
- Growth at 28°C and 37°C after 7 days but not at 43°C.
- On MacConkey agar at 28°C and even 37°C.
- Tolerance to 5% NaCl and 500mg/l hydroxylamine (Ogawa egg medium) and 0.2% picrate (Sauton agar medium).
- Positive degradation of p-aminosalicylate.
- Production of arylsulfatase but not of nitrate reductase and Tween 80 hydrolase.
- Negative iron uptake test. No utilisation of fructose, glucose, oxalate and citrate as sole carbon sources.
Differential characteristics
- M. abscessus and M. chelonae can be distinguished from M. fortuitum or M. peregrinum by their failure to reduce nitrate and to take up iron.
- Tolerance to 5% NaCl in Löwenstein-Jensen media tolerance to 0.2% picrate in Sauton agar and non-utilisation of citrate as a sole carbon source are characteristics that distinguish M. abscessus from M. chelonae.
- M. abscessus and M. chelonae sequevar I share an identical sequence in the 54-510 region of 16S rRNA, However, both species can be differentiated by their hsp65 or ITS sequences
Strains
ATCC 19977 = CCUG 20993 = CIP 104536 = DSM 44196 = JCM 13569 = NCTC 13031
Genetics
A draft genome sequence of M. abscessus subsp. bolletii BDT was completed in 2012.[1] More than 25 different strains of this subspecies, including pathogenic isolates, have had their genomes sequenced.[2]
Risk Factors
The infection tends to occur in patients with chronic lung disease, post-traumatic wound infections, post-tympanostomy tube otitis media, and as a disseminated cutaneous diseases in patients of immune suppression.
References
- ↑ Choi, G.-E.; Cho, Y.-J.; Koh, W.-J.; Chun, J.; Cho, S.-N.; Shin, S. J. (24 April 2012). "Draft Genome Sequence of Mycobacterium abscessus subsp. bolletii BDT". Journal of Bacteriology. 194 (10): 2756–2757. doi:10.1128/JB.00354-12.
- ↑ Davidson, Rebecca M. (December 2013). "Phylogenomics of Brazilian epidemic isolates of Mycobacterium abscessus subsp. bolletii reveals relationships of global outbreak strains". Infection, Genetics and Evolution. 20: 292–297. doi:10.1016/j.meegid.2013.09.012. Unknown parameter
|coauthors=
ignored (help)
- Kusunoki,S.,T. Ezaki. 1992. Proposal of Mycobacterium peregrinum sp. nov., nom. rev., and elevation of Mycobacterium chelonae subsp. abscessus (Kubica et al.) to species status: Mycobacterium abscessus comb. nov. Int. J. Syst. Bacteriol. 42, 240-245.