Adapter molecule crk is a member of an adapter protein family that binds to several tyrosine-phosphorylated proteins. This protein has several SH2 and SH3 domains (src-homology domains) and is involved in several signaling pathways, recruiting cytoplasmic proteins in the vicinity of tyrosine kinase through SH2-phosphotyrosine interaction. The N-terminal SH2 domain of this protein functions as a positive regulator of transformation whereas the C-terminal SH3 domain functions as a negative regulator of transformation. Two alternative transcripts encoding different isoforms with distinct biological activity have been described.[4]
Crk together with CrkL participates in the Reelin signaling cascade downstream of DAB1.[2][3]
v-Crk, a transforming oncoprotein from avian sarcoma viruses, is a fusion of viral "gag" protein with the SH2 and SH3 domains of cellular Crk.[5] The name Crk is from "CT10 Regulator of Kinase" where CT10 is the avian virus from which was isolated a protein, lacking kinase domains, but capable of stimulating phosphorylation of tyrosines in cells.[6]
Crk should not be confused with Src, which also has cellular (c-Src) and viral (v-Src) forms and is involved in some of the same signaling pathways but is a protein tyrosine-kinase.
↑Tetsuya Nakamoto; Ryuichi Sakai; Keiya Ozawa; Yoshio Yazaki; Hisamaru Hirai (1996). "Direct Binding of C-terminal Region of p130Graphic to SH2 and SH3 Domains of Src Kinase". J. Biol. Chem. 271: 8959–8965. doi:10.1074/jbc.271.15.8959. PMID8621540.
↑Mayer BJ, Hamaguchi M, Hanafusa H (March 1988). "A novel viral oncogene with structural similarity to phospholipase C". Nature. 332 (6161): 272–5. doi:10.1038/332272a0. PMID2450282.
↑Zhou B, Liu L, Reddivari M, Zhang XA (2004). "The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity". Cancer Res. 64 (20): 7455–63. doi:10.1158/0008-5472.CAN-04-1574. PMID15492270.
↑ 10.010.1Gu J, Sumida Y, Sanzen N, Sekiguchi K (2001). "Laminin-10/11 and fibronectin differentially regulate integrin-dependent Rho and Rac activation via p130(Cas)-CrkII-DOCK180 pathway". J. Biol. Chem. 276 (29): 27090–7. doi:10.1074/jbc.M102284200. PMID11369773.
↑Garton AJ, Tonks NK (1999). "Regulation of fibroblast motility by the protein tyrosine phosphatase PTP-PEST". J. Biol. Chem. 274 (6): 3811–8. doi:10.1074/jbc.274.6.3811. PMID9920935.
↑Qiu W, Cobb RR, Scholz W (1998). "Inhibition of p130cas tyrosine phosphorylation by calyculin A". J. Leukoc. Biol. 63 (5): 631–5. PMID9581808.
↑Blaukat A, Ivankovic-Dikic I, Grönroos E, Dolfi F, Tokiwa G, Vuori K, Dikic I (1999). "Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades". J. Biol. Chem. 274 (21): 14893–901. doi:10.1074/jbc.274.21.14893. PMID10329689.
↑Wang JF, Park IW, Groopman JE (2000). "Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C". Blood. 95 (8): 2505–13. PMID10753828.
↑Gesbert F, Garbay C, Bertoglio J (1998). "Interleukin-2 stimulation induces tyrosine phosphorylation of p120-Cbl and CrkL and formation of multimolecular signaling complexes in T lymphocytes and natural killer cells". J. Biol. Chem. 273 (7): 3986–93. doi:10.1074/jbc.273.7.3986. PMID9461587.
↑Husson H, Mograbi B, Schmid-Antomarchi H, Fischer S, Rossi B (1997). "CSF-1 stimulation induces the formation of a multiprotein complex including CSF-1 receptor, c-Cbl, PI 3-kinase, Crk-II and Grb2". Oncogene. 14 (19): 2331–8. doi:10.1038/sj.onc.1201074. PMID9178909.
↑ 18.018.1Matsuda M, Ota S, Tanimura R, Nakamura H, Matuoka K, Takenawa T, Nagashima K, Kurata T (1996). "Interaction between the amino-terminal SH3 domain of CRK and its natural target proteins". J. Biol. Chem. 271 (24): 14468–72. doi:10.1074/jbc.271.24.14468. PMID8662907.
↑Nishihara H, Kobayashi S, Hashimoto Y, Ohba F, Mochizuki N, Kurata T, Nagashima K, Matsuda M (1999). "Non-adherent cell-specific expression of DOCK2, a member of the human CDM-family proteins". Biochim. Biophys. Acta. 1452 (2): 179–87. doi:10.1016/S0167-4889(99)00133-0. PMID10559471.
↑Schumacher C, Knudsen BS, Ohuchi T, Di Fiore PP, Glassman RH, Hanafusa H (1995). "The SH3 domain of Crk binds specifically to a conserved proline-rich motif in Eps15 and Eps15R". J. Biol. Chem. 270 (25): 15341–7. doi:10.1074/jbc.270.25.15341. PMID7797522.
↑Hashimoto Y, Katayama H, Kiyokawa E, Ota S, Kurata T, Gotoh N, Otsuka N, Shibata M, Matsuda M (1998). "Phosphorylation of CrkII adaptor protein at tyrosine 221 by epidermal growth factor receptor". J. Biol. Chem. 273 (27): 17186–91. doi:10.1074/jbc.273.27.17186. PMID9642287.
↑ 25.025.1Okada S, Pessin JE (1996). "Interactions between Src homology (SH) 2/SH3 adapter proteins and the guanylnucleotide exchange factor SOS are differentially regulated by insulin and epidermal growth factor". J. Biol. Chem. 271 (41): 25533–8. doi:10.1074/jbc.271.41.25533. PMID8810325.
↑Karas M, Koval AP, Zick Y, LeRoith D (2001). "The insulin-like growth factor I receptor-induced interaction of insulin receptor substrate-4 and Crk-II". Endocrinology. 142 (5): 1835–40. doi:10.1210/en.142.5.1835. PMID11316748.
↑Koval AP, Karas M, Zick Y, LeRoith D (1998). "Interplay of the proto-oncogene proteins CrkL and CrkII in insulin-like growth factor-I receptor-mediated signal transduction". J. Biol. Chem. 273 (24): 14780–7. doi:10.1074/jbc.273.24.14780. PMID9614078.
↑Oehrl W, Kardinal C, Ruf S, Adermann K, Groffen J, Feng GS, Blenis J, Tan TH, Feller SM (1998). "The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins". Oncogene. 17 (15): 1893–901. doi:10.1038/sj.onc.1202108. PMID9788432.
↑Ohashi Y, Tachibana K, Kamiguchi K, Fujita H, Morimoto C (1998). "T cell receptor-mediated tyrosine phosphorylation of Cas-L, a 105-kDa Crk-associated substrate-related protein, and its association of Crk and C3G". J. Biol. Chem. 273 (11): 6446–51. doi:10.1074/jbc.273.11.6446. PMID9497377.
↑ 34.034.1Matsumoto T, Yokote K, Take A, Takemoto M, Asaumi S, Hashimoto Y, Matsuda M, Saito Y, Mori S (2000). "Differential interaction of CrkII adaptor protein with platelet-derived growth factor alpha- and beta-receptors is determined by its internal tyrosine phosphorylation". Biochem. Biophys. Res. Commun. 270 (1): 28–33. doi:10.1006/bbrc.2000.2374. PMID10733900.
↑Yokote K, Hellman U, Ekman S, Saito Y, Rönnstrand L, Saito Y, Heldin CH, Mori S (1998). "Identification of Tyr-762 in the platelet-derived growth factor alpha-receptor as the binding site for Crk proteins". Oncogene. 16 (10): 1229–39. doi:10.1038/sj.onc.1201641. PMID9546424.
↑Zhao C, Ma H, Bossy-Wetzel E, Lipton SA, Zhang Z, Feng GS (2003). "GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2". J. Biol. Chem. 278 (36): 34641–53. doi:10.1074/jbc.M304594200. PMID12819203.
↑Moon SY, Zang H, Zheng Y (2003). "Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP". J. Biol. Chem. 278 (6): 4151–9. doi:10.1074/jbc.M207789200. PMID12454018.
↑Watanabe S, Take H, Takeda K, Yu ZX, Iwata N, Kajigaya S (2000). "Characterization of the CIN85 adaptor protein and identification of components involved in CIN85 complexes". Biochem. Biophys. Res. Commun. 278 (1): 167–74. doi:10.1006/bbrc.2000.3760. PMID11071869.
Further reading
Feller SM, Ren R, Hanafusa H, Baltimore D (1995). "SH2 and SH3 domains as molecular adhesives: the interactions of Crk and Abl". Trends Biochem. Sci. 19 (11): 453–8. doi:10.1016/0968-0004(94)90129-5. PMID7855886.
Pessin JE, Okada S (2002). "Insulin and EGF receptors integrate the Ras and Rap signaling pathways". Endocr. J. 46 Suppl: S11–6. doi:10.1507/endocrj.46.suppl_s11. PMID12054111.
Cicchetti P, Mayer BJ, Thiel G, Baltimore D (1992). "Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho". Science. 257 (5071): 803–6. doi:10.1126/science.1379745. PMID1379745.
Anderson D, Koch CA, Grey L, et al. (1990). "Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors". Science. 250 (4983): 979–82. doi:10.1126/science.2173144. PMID2173144.
Teng KK, Lander H, Fajardo JE, et al. (1995). "v-Crk modulation of growth factor-induced PC12 cell differentiation involves the Src homology 2 domain of v-Crk and sustained activation of the Ras/mitogen-activated protein kinase pathway". J. Biol. Chem. 270 (35): 20677–85. doi:10.1074/jbc.270.35.20677. PMID7657647.
Schumacher C, Knudsen BS, Ohuchi T, et al. (1995). "The SH3 domain of Crk binds specifically to a conserved proline-rich motif in Eps15 and Eps15R". J. Biol. Chem. 270 (25): 15341–7. doi:10.1074/jbc.270.25.15341. PMID7797522.
Fioretos T, Heisterkamp N, Groffen J, et al. (1993). "CRK proto-oncogene maps to human chromosome band 17p13". Oncogene. 8 (10): 2853–5. PMID8378094.
Smit L, van der Horst G, Borst J (1996). "Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors". J. Biol. Chem. 271 (15): 8564–9. doi:10.1074/jbc.271.15.8564. PMID8621483.
Beitner-Johnson D, Blakesley VA, Shen-Orr Z, et al. (1996). "The proto-oncogene product c-Crk associates with insulin receptor substrate-1 and 4PS. Modulation by insulin growth factor-I (IGF) and enhanced IGF-I signaling". J. Biol. Chem. 271 (16): 9287–90. doi:10.1074/jbc.271.16.9287. PMID8621590.