Adult brain tumors pathophysiology

Jump to navigation Jump to search

Adult brain tumors Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Adult brain tumors from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Adult brain tumors pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Adult brain tumors pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Adult brain tumors pathophysiology

CDC on Adult brain tumors pathophysiology

Adult brain tumors pathophysiology in the news

Blogs on Adult brain tumors pathophysiology

Directions to Hospitals Treating Adult brain tumors

Risk calculators and risk factors for Adult brain tumors pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Pathophysiology

Metastases

The most common primary cancers metastasizing to the brain are lung cancer (50%), breast cancer (15%–20%), unknown primary cancer (10%–15%), melanoma (10%), and colon cancer (5%). Eighty percent of brain metastases occur in the cerebral hemispheres, 15% occur in the cerebellum, and 5% occur in the brain stem. Metastases to the brain are multiple in more than 70% of cases, but solitary metastases also occur. Brain involvement can occur with cancers of the nasopharyngeal region by direct extension along the cranial nerves or through the foramina at the base of the skull. Dural metastases may constitute as much as 9% of total CNS metastases.

A lesion in the brain should not be assumed to be a metastasis just because a patient has had a previous cancer; such an assumption could result in overlooking appropriate treatment of a curable tumor. Primary brain tumors rarely spread to other areas of the body, but they can spread to other parts of the brain and to the spinal axis.