Anoxic brain injury natural history, complications and prognosis

Jump to navigation Jump to search

Anoxic brain injury Microchapters

Home

Patient Information

Overview

Pathophysiology

Causes

Differentiating Anoxic brain injury from other Diseases

Epidemiology and Demographics

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

CT

MRI

Echocardiography or Ultrasound

Electroencephalogram

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Anoxic brain injury natural history, complications and prognosis On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Anoxic brain injury natural history, complications and prognosis

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Anoxic brain injury natural history, complications and prognosis

CDC on Anoxic brain injury natural history, complications and prognosis

Anoxic brain injury natural history, complications and prognosis in the news

Blogs on Anoxic brain injury natural history, complications and prognosis

Directions to Hospitals Treating Anoxic brain injury

Risk calculators and risk factors for Anoxic brain injury natural history, complications and prognosis

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Persons with anoxic brain injury are at a high risk of death due to factors such as cardiac arrest, congestive heart failure, pneumonia, and sepsis. There are predictors of survival that have been studied. For example, persons with in-hospital cardiac arrest have a better chance of survival than out-of-hospital arrest, rapid defibrillation improves survival, and VT and VF have a better prognosis than asystole or PEA.

Natural History

Patients with anoxic injury due to cardiac arrest are at risk of death from a variety of causes including recurrent sudden cardiac death, congestive heart failure, pneumonia, sepsis from a variety of sources and pulmonary embolism.

Prognosis

Predictors of Survival

Improved Prognosis with In-Hospital versus Out-of-Hospital Cardiac Arrest

Out-of-hospital cardiac arrest (OHCA) has a worse survival rate (2-8% survival at discharge) than in-hospital cardiac arrest (15% survival at discharge).

Improved Prognosis with VT/VF versus PEA or Asystole

A major determining factor in survival is the initially documented electrocardiographic rhythm. Patients with ventricular fibrillation (VF) or ventricular tachycardia (VT) (aka VT/VF) have a 10-15 fold greater chance of survival than patients with pulseless electrical activity (PEA) or asystole. VT and VF are responsive to defibrillation, whereas asystole and PEA are not.

Rapid Defibrillation is Associated with Improved Survival

Rapid intervention with a defibrillator increases survival rates.[1][2]

Incidence and Predictors of Entering Into a Vegetative State versus Making a Full Neurologic Recovery

Cardiac arrest is the third leading cause of coma. Approximately 80% of patients who suffered a cardiac arrest who survived to be admitted to the hospital will be in coma for varying lengths of time. Of these patients, approximately 40% will enter into a persistent vegetative state and 80% die within 1 year. In contrast, those rare patients who survive until discharge without significant neurological impairment can expect a fair to good quality of life.

The duration of hypoxia/ischemia determines the extent of neuronal injury i.e. in patients who suffer hypoxia for less than 5 minutes, are less likely to have permanent neurologic deficits, while with prolonged, global hypoxia, patients may develop myoclonus or a persistent vegetative state.[3]

The duration of coma is an important predictor of the recovery of neurologic function. In a 1979 study of 181 cardiac arrest patients who survived to hospital admission, 84% were comatose for more than 1 hour and 56% were comatose for more than 24 hours[4]. There was minimal neurologic deficit if coma lasted less than 24 hours. However, among the 85 patients who were comatose for more than 24 hours, only 7 of them were discharged alive. The severity of neurological impairment increased with increased duration of coma. Of the patients who were in coma for more than 7 days, none regained consciousness. It should be noted that 80 patients died in a coma.

A JAMA article in 1985 attempted to identify the multivariate predictors neurologic prognosis in 210 patients with coma due to cerebral hypoxia. A total of 13% of patients regained neurologic function and independent function at some time during the first year.

Initial Neurologic Findings

24 Hour Neurologic Findings

  • Most patients who survive become alert by 24-48 hours. In one series, of those patients who were in a coma through day 2, only 2 of the 27 (7%) survived.[8] In a second series, no patient who remained in a coma by the third day survived.[9]
  • Absent motor responses, the presence of posturing (extensor /flexor motor responses) and the lack of spontaneous eye movements that were either orienting or roving conjugate was associated with a lack of independent recovery in 92 of 93 patients. [4].
  • In contrast, of the 30 patients who showed improvement in their eye-opening responses, obeyed commands or had withdraw to pain, 19 (63%) regained independent function.[4].
  • Seizures that occur after the initial 24 hours are associated with a poorer outcomes. In one study only 3 of 15 patients who seized recovered consciousness, and only one patient lived a year[10]. The presence of status epilepticus at any time following cardiac arrest is associated with a very poor prognosis as all nine patients with status epilepticus died in one series.[11]
  • The absence of spontaneous eye opening and intermittent visual fixation by the end of the first day is associated with a poor prognosis. Although eye opening is necessary for a good outcomes, it alone is not sufficient, as many patients who have spontaneous eye opening still go on to have a poor prognosis. Roving eye movements in the absence of visual fixation is often indicative of extensive bilateral cerebral hemispheral damage and portends a poor prognosis. If the gaze is sustained in an upward direction, this carries a poor prognosis as well.[12]

In a 1990s study from the UK, resuscitation for cardiac arrest was attempted in 10,081 patients. Of these only 1476 (14.6%) survived to be admitted to the hospital [13][14]. Of these small number of patients who survived to admission, 59.3% died during that admission, half of these within the first 24 hours. 46.1% survived to hospital discharge (this is 6.75% of those who had been resuscitated by ambulance staff). Of those who were successfully discharged from hospital, 70% were still alive 4 years after their discharge.

In a review of 68 studies through 1997, the incidence of survival to discharge was higher at 14% with a wide range of 0-28%.[15]

References

  1. Eisenberg MS, Mengert TJ (2001). "Cardiac resuscitation". N. Engl. J. Med. 344 (17): 1304–13. PMID 11320390. Unknown parameter |month= ignored (help)
  2. Bunch TJ, White RD, Gersh BJ; et al. (2003). "Long-term outcomes of out-of-hospital cardiac arrest after successful early defibrillation". N. Engl. J. Med. 348 (26): 2626–33. doi:10.1056/NEJMoa023053. PMID 12826637. Unknown parameter |month= ignored (help)
  3. Mellion ML (2005). "Neurologic consequences of cardiac arrest and preventive strategies". Medicine and Health, Rhode Island. 88 (11): 382–5. PMID 16363390. Unknown parameter |month= ignored (help)
  4. 4.0 4.1 4.2 4.3 4.4 Thomassen A, Wernberg M (1979). "Prevalence and prognostic significance of coma after cardiac arrest outside intensive care and coronary units". Acta Anaesthesiologica Scandinavica. 23 (2): 143–8. PMID 442945. Unknown parameter |month= ignored (help)
  5. Snyder BD, Loewenson RB, Gumnit RJ, et al: Neurologic prognosis after cardiopulmonary arrest: II. Level of consciousness. Neurology 1980;30:52-58.
  6. Snyder BD, Gumnit RJ, Leppik IE, et al: Neurologic prognosis after cardiopulmonary arrest: IV. Brainstem refl exes. Neurology 1981;31: 1092-1097
  7. Roine RO: Neurological Outcome of Out-of-Hospital Cardiac Arrest [dissertation]. University of Helsinki, 1993.
  8. Snyder BD, Loewenson RB, Gumnit RJ, et al: Neurologic prognosis after cardiopulmonary arrest: II. Level of consciousness. Neurology 1980;30:52-58.
  9. Bell JA, Hodgson HJF: Coma after cardiac arrest. Brain 1974;97:361-372.
  10. Roine RO: Neurological Outcome of Out-of-Hospital Cardiac Arrest [dissertation]. University of Helsinki, 1993.
  11. Roine RO: Neurological Outcome of Out-of-Hospital Cardiac Arrest [dissertation]. University of Helsinki, 1993.
  12. Keane JR: Sustained upgaze in coma. Annals of Neurolology 1981;9:409-412.
  13. Lyon RM, Cobbe SM, Bradley JM, Grubb NR (2004). "Surviving out of hospital cardiac arrest at home: a postcode lottery?". Emerg Med J. 21 (5): 619–24. doi:10.1136/emj.2003.010363. PMC 1726412. PMID 15333549. Unknown parameter |month= ignored (help)
  14. Cobbe SM, Dalziel K, Ford I, Marsden AK (1996). "Survival of 1476 patients initially resuscitated from out of hospital cardiac arrest". BMJ. 312 (7047): 1633–7. PMC 2351362. PMID 8664715. Unknown parameter |month= ignored (help)
  15. Ballew KA (1997). "Cardiopulmonary resuscitation". BMJ. 314 (7092): 1462–5. PMC 2126720. PMID 9167565. Unknown parameter |month= ignored (help)

Template:WH Template:WS CME Category::Cardiology