Atrial septal defect ostium secundum percutaneous closure
Atrial septal defect ostium secundum Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Atrial septal defect ostium secundum percutaneous closure On the Web |
American Roentgen Ray Society Images of Atrial septal defect ostium secundum percutaneous closure |
FDA on Atrial septal defect ostium secundum percutaneous closure |
CDC on Atrial septal defect ostium secundum percutaneous closure |
Atrial septal defect ostium secundum percutaneous closure in the news |
Blogs on Atrial septal defect ostium secundum percutaneous closure |
Directions to Hospitals Treating Atrial septal defect ostium secundum |
Risk calculators and risk factors for Atrial septal defect ostium secundum percutaneous closure |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Priyamvada Singh, M.B.B.S. [2]; Cafer Zorkun, M.D., Ph.D. [3] Assistant Editor(s)-In-Chief: Kristin Feeney, B.S. [4]
Overview
Percutaneous device closure is commonly performed to close an ostium secundum type of atrial septal defect and patent foramen ovales. It is still not FDA approved for closure of other forms of atrial septal defects such as primum, sinus venosus and coronary sinus. With proper patient selection at experienced centers, it has been found to be as successful, safe and effective as surgical closure. Additionally, it has been associated with fewer complications and a reduced length of stay compared to surgical closure. [1]
Percutanous Closure
Mechanisms of Benefit
In percutaneous closure of atrial septal defects a self-expandable round disc is placed around the defect that prevents the left-to-right shunting of blood across the lesion. The mechanical prevention of this shunting helps improve the forward circulation in the heart, prevents shunting of blood, and prevents mixing of well exygenated blood with poorly oxygenated blood (shunting). It is associated with excellent results, particularly among those patients who have not developed irreversible pulmonary artery disease (Eisenmenger's syndrome).
Indications
The percutaneous closure of atrial septal defects is currently only indicated for the closure of ostium secundum atrial septal defects and patent foramen ovale (patent formen ovale has inter-atrial communications but it is not a true atrial septal defect in sa far as there is a flap like piece of tissue). In patients with a secundum defect, there must be a sufficient rim of tissue around the defect for successful percutaneous closure.
Contraindications
It should not be used in patients with primum, sinus venosus and coronary sinus type of atrial septal defects. Surgical closure of ostium secundum atrial septal defect can be done when a concomitant tricuspid valve repair is considered or when the anatomy of the defect doesn't favor a percutaneous device.
Type of Occluders
The Amplatzer septal occluder (ASO) is currently the most widely used device because it is easy to implant and has high success rates. It first came to be used for human subjects in 1995. However, the device is still not approved for usage in percutaneous closure of primum,sinus venosus and coronary sinus type of atrial septal defects. It allows closure of large cavities, is easy to implant, and boasts high success rates. As an instrument, the Ampltazer septal occluder consists of two self-expandable round discs connected to each other with a 4-mm waist, made up of 0.004-0.005 nitinol wire mesh filled with Dacron fabric. The prevalence of residual defect is low. The Food and Drug Administration has authorized the following percutaenous transcatheters for usage:[2]
- Amplatzer septal occluder
- CardioSEAL
- HELEX septal occluder
- Sideris patch
{{#ev:youtube|4c3CEgjj2PY}}
Perutaneous Repair
Percutaneous device closure of atrial septal defect, is currently approved only for secundum defects. Prior to the procedure, the patient is started on antiplatelet therapy for 6 months to prevent thrombus formation. Transesophageal echocardiography along with stop-flow technique is used for determining the device size, position, and deployment.
Pre-Surgical Considerations
1) Prior to undergoing percutaneous closure, eligible atrial septal defect patients must undergo pharmacologic preparation therapy.
2) Most therapy regimens include antiplatelet drugs such as aspirin or clopidogrel for a minimum of six months to protect patients against thrombus formation.
3) Secundum defects are assessed via echocardiographic monitoring to determine the anatomic viability of percutaneous closure.
4) The ideal secundum defect is less than 30mm in diameter with an accompanying rim of tissue around the defect of at least 5mm.
5) The rim of tissue serves to prevent impingement upon the superior vena cava (SVC), inferior vena cava (IVC), as well as the tricuspid or mitral valves.[3]
Steps During Percutaneous Closure
The salient feature of the percutaneous closure are-
1) Device is placed via femoral vein.
2) Best results are for centrally located secundum defects.
3) Static diameter of the defect is assessed by using transesophageal echocardiography.
4) Transesophageal echocardiography used for determining the device size, position, and deployment.
5) A stop-flow technique is used to select the proper diameter of the device.
6) In the stop flow technique, the sizing balloon is inflated until no flow is visible through the defect using transesophageal echocardiography.
7) The margins of the defect must be ≤5 mm to accommodate the edges of the device.
{{#ev:youtube|Gros-u7YCTk}}
Benefits of Percutaneous Closure
The percutaneous closure of ostium secundum is the method of choice in many centers.[4][5] The benefits that can be associated with the closure are as follow:
Disease Related Benefits
- Fewer complications compared to surgical closure
- Reduced need for blood transfusions
- Symptomatic improvement
- Regression of positive airway pressure
- Positive changes in right ventricle performance
- Improved functional capacity[6]
- Improved left atrial volume index
- Improved left ventricular myocardial performance index
- Improved right ventricular myocardial performance index
- Improved peak oxygen uptake
Other Benefits
- Less invasive no need for cardiopulmonary bypass
- Successful implantation rates of more than 96%
- Established practice (done in most hospital these days)
- Cost-effective
- Shorter hospital stays
Complications
The frequency of complications with percutaneous closure is low, manifesting in under 9% of all cases. With experienced, skilled clinicians, the rate of complication may be as low as 1%.[7] Complications associated with percutaneous closure include:
Device Related
- Device embolization
- Malposition of the device
- Device erosion
Medical Complications
- Atrial fibrillation or supraventricular tachycardia
- Transient antrioventricular block /heart block
- Pericardial effusion
- Thrombus formation in the left atrial appendage
- Iliac vein dissection
- Groin hematoma
- Cardiac perforation
- Increased levels of cardiac troponin I
- Residual shunts
- There can be migration or erosion of the device so follow-up is warranted.
Prognosis
The prognosis of percutaneous repair of atrial septal defect is generally good. However, the prognosis varies and depends on some factors like age at surgery, size of defect, amount of blood shunting and other associated co-morbidities at the time of repair. Some complications like pulmonary hypertension,Eisenmenger’s syndrome, right sided heart failure, arrhythmias (atrial fibrillation, atrial flutter) and stroke can occur after the repair. However, these are common in older patients(>40years) compared to younger patients.
Supportive Trial Data
Trials Comparing Percutaneous Versus Surgical Closure
1) In a multicenter, non-randomized study performed in 29 pediatric cardiology centers, the patients were allotted to either the percutaneous closure or the surgical closure group depending on their preference. The success rate of the surgery was similar in the percutaneous closure and the surgical closure. However, the complication rates were more in the surgical groups (24%) compared to the percutaneous groups (7.2%). Also, the mean hospital stay was 3 days in surgical group compared to 1 day in the percutaneous device group. Additionally, surgical closure required sternotomy and cardiopulmonary bypass. With appropriate patient selection, device closure could be very successful. Also, it is safe and effective compared to other modalities.[1]
2) A study done on 45 subjects (15 with percutaneous closure, 15 with surgical correction and 15 control) to evaluate the left and right atrial function after transcatheter atrial septal defect closure compared with surgically treated ASD, using strain (epsilon) and epsilon rate imaging (SR) techniques, found that in the surgical corrected groups the peak systolic epsilon and SR values were significantly reduced compared to device and control group. Thus, it could be concluded that percutaneous closure helps in conserving both the atrial regional myocardial properties. [8]
Trials Testing the Efficacy and Safety of Device Closure
1) In a study done on 236 patients with ostium secundum (ASD), to evaluate the safety and efficacy of transcatheter closure with the amplatzer septal occluder, the device was found to be very efficient. It causes atrial septal defect closure in 84.7% of the treated patient population. During a median follow up of 2.3 years complete closure was documented in 94%, with a residual shunt only in 12 patients. Two of the treated patients were reported to have procedure related complications like retroperitoneal bleeding and air embolism.[9]
References
- ↑ 1.0 1.1 Du ZD, Hijazi ZM, Kleinman CS, Silverman NH, Larntz K, Amplatzer Investigators (2002). "Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: results of a multicenter nonrandomized trial". J Am Coll Cardiol. 39 (11): 1836–44. PMID 12039500.
- ↑ Schwetz BA (2002). "From the Food and Drug Administration". JAMA. 287 (5): 578. PMID 11829678.
- ↑ Ferreira SM, Ho SY, Anderson RH (1992). "Morphological study of defects of the atrial septum within the oval fossa: implications for transcatheter closure of left-to-right shunt". Br Heart J. 67 (4): 316–20. PMC 1024841. PMID 1389707.
- ↑ Bjørnstad P (2006). "Is interventional closure the current treatment of choice for selected patients with deficient atrial septation?". Cardiol Young. 16 (1): 3–10. PMID 16454871.
- ↑ Dhillon R, Thanopoulos B, Tsaousis G, Triposkiadis F, Kyriakidis M, Redington A (1999). "Transcatheter closure of atrial septal defects in adults with the Amplatzer septal occluder". Heart. 82 (5): 559–62. PMC 1760778. PMID 10525508.
- ↑ Salehian O, Horlick E, Schwerzmann M, Haberer K, McLaughlin P, Siu SC; et al. (2005). "Improvements in cardiac form and function after transcatheter closure of secundum atrial septal defects". J Am Coll Cardiol. 45 (4): 499–504. doi:10.1016/j.jacc.2004.10.052. PMID 15708694.
- ↑ Chessa M, Carminati M, Butera G, Bini RM, Drago M, Rosti L; et al. (2002). "Early and late complications associated with transcatheter occlusion of secundum atrial septal defect". J Am Coll Cardiol. 39 (6): 1061–5. PMID 11897451.
- ↑ Di Salvo G, Drago M, Pacileo G, Rea A, Carrozza M, Santoro G; et al. (2005). "Atrial function after surgical and percutaneous closure of atrial septal defect: a strain rate imaging study". J Am Soc Echocardiogr. 18 (9): 930–3. doi:10.1016/j.echo.2005.01.029. PMID 16153516.
- ↑ Fischer G, Stieh J, Uebing A, Hoffmann U, Morf G, Kramer HH (2003). "Experience with transcatheter closure of secundum atrial septal defects using the Amplatzer septal occluder: a single centre study in 236 consecutive patients". Heart. 89 (2): 199–204. PMC 1767528. PMID 12527678.