Bamford-Stevens reaction

Jump to navigation Jump to search

The Bamford-Stevens reaction is a chemical reaction whereby treatment of tosylhydrazones with strong base gives alkenes.[1][2][3] It is named for the British chemist William Randall Bamford and the Scottish chemist Thomas Stevens Stevens (1900-2000). The usage of aprotic solvents gives predominantly Z-alkenes, while protic solvent gives a mixture of E- and Z-alkenes.

The Bamford-Stevens reaction
The Bamford-Stevens reaction

The treatment of tosylhydrazones with alkyl lithium reagents is called the Shapiro reaction.

Reaction mechanism

The first step of the Bamford-Stevens reaction is the formation of the diazo compound 3.[4]

The mechanism of the Bamford-Stevens reaction
The mechanism of the Bamford-Stevens reaction

In protic solvents, the diazo compound 3 decomposes to the carbenium ion 5.

The mechanism of the Bamford-Stevens reaction
The mechanism of the Bamford-Stevens reaction

In aprotic solvents, the diazo compound 3 decomposes to the carbene 7.

The mechanism of the Bamford-Stevens reaction
The mechanism of the Bamford-Stevens reaction

References

  1. Bamford, W. R.; Stevens, T. S. (1952). "The decomposition of toluene-p-sulfonylhydrazones by alkali". J. Chem. Soc.: 4735–4740. doi:10.1039/JR9520004735.
  2. Shapiro, R. H. (March 1976). "Alkenes from Tosylhydrazones". Organic Reactions. 23. pp. 405–507. ISBN 0-471-19624-X.
  3. Adlington, R. M.; Barrett, A. G. M. (1983). "Recent applications of the Shapiro reaction". Acc. Chem. Res. 16 (2): 55–59. doi:10.1021/ar00086a004.
  4. Creary, X. (1986). "Tosylhydrazone salt pyrolises: phenyldiazomethanes". Organic Syntheses. 64: 207. Text " Coll. " ignored (help) (also in the Collective Volume (1990) 7:438 (PDF))

See also

Template:WikiDoc Sources