CDC37 consists of three structural domains. The N-terminal domain binds to protein kinases.[11] The central domain is the Hsp90chaperone (heat shock protein 90) binding domain.[12] The function of the C-terminal domain is unclear.
↑Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC1847948. PMID17353931.
↑Lamphere L, Fiore F, Xu X, Brizuela L, Keezer S, Sardet C, Draetta GF, Gyuris J (1997). "Interaction between Cdc37 and Cdk4 in human cells". Oncogene. 14 (16): 1999–2004. doi:10.1038/sj.onc.1201036. PMID9150368.
↑Roe SM, Ali MM, Meyer P, Vaughan CK, Panaretou B, Piper PW, Prodromou C, Pearl LH (2004). "The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37)". Cell. 116 (1): 87–98. doi:10.1016/S0092-8674(03)01027-4. PMID14718169.
↑Silverstein AM, Grammatikakis N, Cochran BH, Chinkers M, Pratt WB (1998). "p50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site". J. Biol. Chem. 273 (32): 20090–5. doi:10.1074/jbc.273.32.20090. PMID9685350.
↑Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G (2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nat. Cell Biol. 6 (2): 97–105. doi:10.1038/ncb1086. PMID14743216.
↑ 9.09.1Chen G, Cao P, Goeddel DV (2002). "TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90". Mol. Cell. 9 (2): 401–10. doi:10.1016/S1097-2765(02)00450-1. PMID11864612.
↑Kimura Y, Rutherford SL, Miyata Y, Yahara I, Freeman BC, Yue L, Morimoto RI, Lindquist S (July 1997). "Cdc37 is a molecular chaperone with specific functions in signal transduction". Genes Dev. 11 (14): 1775–85. doi:10.1101/gad.11.14.1775. PMID9242486.
↑Turnbull EL, Martin IV, Fantes PA (August 2005). "Cdc37 maintains cellular viability in Schizosaccharomyces pombe independently of interactions with heat-shock protein 90". FEBS J. 272 (16): 4129–40. doi:10.1111/j.1742-4658.2005.04825.x. PMID16098195.
Lamphere L, Fiore F, Xu X, et al. (1997). "Interaction between Cdc37 and Cdk4 in human cells". Oncogene. 14 (16): 1999–2004. doi:10.1038/sj.onc.1201036. PMID9150368.
Kimura Y, Rutherford SL, Miyata Y, et al. (1997). "Cdc37 is a molecular chaperone with specific functions in signal transduction". Genes Dev. 11 (14): 1775–85. doi:10.1101/gad.11.14.1775. PMID9242486.
Silverstein AM, Grammatikakis N, Cochran BH, et al. (1998). "p50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site". J. Biol. Chem. 273 (32): 20090–5. doi:10.1074/jbc.273.32.20090. PMID9685350.
O'Keeffe B, Fong Y, Chen D, et al. (2000). "Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription". J. Biol. Chem. 275 (1): 279–87. doi:10.1074/jbc.275.1.279. PMID10617616.
Hartson SD, Irwin AD, Shao J, et al. (2000). "p50(cdc37) is a nonexclusive Hsp90 cohort which participates intimately in Hsp90-mediated folding of immature kinase molecules". Biochemistry. 39 (25): 7631–44. doi:10.1021/bi000315r. PMID10858314.
Shao J, Grammatikakis N, Scroggins BT, et al. (2001). "Hsp90 regulates p50(cdc37) function during the biogenesis of the activeconformation of the heme-regulated eIF2 alpha kinase". J. Biol. Chem. 276 (1): 206–14. doi:10.1074/jbc.M007583200. PMID11036079.
Rao J, Lee P, Benzeno S, et al. (2001). "Functional interaction of human Cdc37 with the androgen receptor but not with the glucocorticoid receptor". J. Biol. Chem. 276 (8): 5814–20. doi:10.1074/jbc.M007385200. PMID11085988.
Scholz GM, Cartledge K, Hall NE (2001). "Identification and characterization of Harc, a novel Hsp90-associating relative of Cdc37". J. Biol. Chem. 276 (33): 30971–9. doi:10.1074/jbc.M103889200. PMID11413142.
Chen G, Cao P, Goeddel DV (2002). "TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90". Mol. Cell. 9 (2): 401–10. doi:10.1016/S1097-2765(02)00450-1. PMID11864612.
Siligardi G, Panaretou B, Meyer P, et al. (2002). "Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37". J. Biol. Chem. 277 (23): 20151–9. doi:10.1074/jbc.M201287200. PMID11916974.
Basso AD, Solit DB, Chiosis G, et al. (2002). "Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function". J. Biol. Chem. 277 (42): 39858–66. doi:10.1074/jbc.M206322200. PMID12176997.
Abbas-Terki T, Briand PA, Donzé O, Picard D (2003). "The Hsp90 co-chaperones Cdc37 and Sti1 interact physically and genetically". Biol. Chem. 383 (9): 1335–42. doi:10.1515/BC.2002.152. PMID12437126.