Chondrolectin is a type I membrane protein with a carbohydrate recognition domain characteristic of C-type lectins in its extracellular portion.[1][3] In other proteins, this domain is involved in endocytosis of glycoproteins and exogenous sugar-bearing pathogens.[4] This protein has been shown to localise to the perinucleus.[1][5][6]
Function
The exact function of chondrolectin is unknown but it has been show to be a marker of fast motor neurons in mice,[6] and is involved in motor neuron development and growth in zebrafish (danio rerio).[7] Furthermore, human chondrolectin has been shown to localise to motor neurons within the spinal cord.[8]
Clinical significance
Chondrolectin is alternatively spliced in the spinal cord of mouse models[9] of the neuromuscular disease, spinal muscular atrophy (SMA), which predominantly affects lower motor neurons.[8] Increased levels of chondrolectin in a zebrafish model of SMA results in significant improvements in disease-related motor neuron defects.[10]
References
↑ 1.01.11.2Weng L, Smits P, Wauters J, Merregaert J (Jun 2002). "Molecular cloning and characterization of human chondrolectin, a novel type I transmembrane protein homologous to C-type lectins". Genomics. 80 (1): 62–70. doi:10.1006/geno.2002.6806. PMID12079284.
↑Claessens A, Van de Vijver K, Van Bockstaele DR, Wauters J, Berneman ZN, Van Marck E, Merregaert J (Nov 2007). "Expression and localization of CHODLDeltaE/CHODLfDeltaE, the soluble isoform of chondrolectin". Cell Biol Int. 31 (11): 1323–1330. doi:10.1016/j.cellbi.2007.05.014. PMID17606388.
↑ 6.06.1Enjin A, Rabe N, Nakanishi ST, Vallstedt A, Gezelius H, Memic F, Lind M, Hjalt T, Tourtellotte WG, Bruder C, Eichele G, Whelan PJ, Kullander K (Jun 2010). "Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as markers for fast motor neurons and partition cells". J Comp Neurol. 518 (12): 2284–2304. doi:10.1002/cne.22332. PMID20437528.
↑Zhong, Z.; Ohnmacht, J.; Reimer, M. M.; Bach, I.; Becker, T.; Becker, C. G. (2012). "Chondrolectin Mediates Growth Cone Interactions of Motor Axons with an Intermediate Target". Journal of Neuroscience. 32 (13): 4426–4439. doi:10.1523/JNEUROSCI.5179-11.2012. PMID22457492.
↑Sleigh JN, Barreiro-Iglesias A, Oliver PL, Biba A, Becker T, Davies KE, Becker CG, Talbot K (Sep 2013). "Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy". Hum Mol Genet. 23 (4): 855–69. doi:10.1093/hmg/ddt477. PMID24067532.
Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID14702039.
Weng L, Van Bockstaele DR, Wauters J, et al. (2003). "A novel alternative spliced chondrolectin isoform lacking the transmembrane domain is expressed during T cell maturation". J. Biol. Chem. 278 (21): 19164–70. doi:10.1074/jbc.M300653200. PMID12621022.
Reymond A, Friedli M, Henrichsen CN, et al. (2002). "From PREDs and open reading frames to cDNA isolation: revisiting the human chromosome 21 transcription map". Genomics. 78 (1–2): 46–54. doi:10.1006/geno.2001.6640. PMID11707072.
Hattori M, Fujiyama A, Taylor TD, et al. (2000). "The DNA sequence of human chromosome 21". Nature. 405 (6784): 311–9. doi:10.1038/35012518. PMID10830953.