Cerebral hypoxia natural history, complications and prognosis

Jump to navigation Jump to search

Cerebral hypoxia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cerebral hypoxia from other Diseases

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Cerebral hypoxia natural history, complications and prognosis On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cerebral hypoxia natural history, complications and prognosis

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cerebral hypoxia natural history, complications and prognosis

CDC on Cerebral hypoxia natural history, complications and prognosis

Cerebral hypoxia natural history, complications and prognosis in the news

Blogs on Cerebral hypoxia natural history, complications and prognosis

Directions to Hospitals Treating Type page name here

Risk calculators and risk factors for Cerebral hypoxia natural history, complications and prognosis

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Please help WikiDoc by adding more content here. It's easy! Click here to learn about editing.

Prognosis

Mild and moderate cerebral hypoxia generally has no impact beyond the episode of hypoxia. Severe cerebral hypoxia is another matter. Outcome will depend on the success of damage control measures, the amount of brain tissue deprived of oxygen, and the speed with which oxygen was restored to the brain.

If cerebral hypoxia was localized to a specific part of the brain, brain damage will be localized to that region. The long term effects will depend on the purpose of that portion of the brain. Damage to the Broca and Wernicke’s areas of the brain (left side) typically causes problems with speech and language. Damage to the right side of the brain may interfere with the ability to express emotions or interpret what one sees. Damage on either side can cause paralysis of the opposite side of the body.

The effects of certain kinds of severe generalized hypoxias may take time to develop. For example, the long term effects of serious carbon monoxide poisoning usually may take several weeks to appear. Recent research suggests this may be due to an autoimmune response caused by CO induced changes in the myelin sheath surrounding neurons.[1]

If hypoxia results in coma, the length of unconsciousness is often used as an indication of long term damage. In some cases coma can give the brain an opportunity to heal and regenerate,[2] but, in general, the longer a coma continues the greater the likelihood that the person will remain in a vegetative state until death. Even if the patient wakes up, brain damage is likely to be significant enough to prevent a return to normal functioning.

The effects of long term comas are not limited to the comatose person. Long term coma can have significant impact on their families.[3] Families of coma victims often have idealized images of the outcome based on Hollywood movie depictions of coma.[4] Adjusting to the realities of ventilators, feeding tubes, bedsores and muscle wasting may be difficult.[5] Treatment decision often involve complex ethical choices and can strain family dynamics.[6]

References

  1. University Of Pennsylvania Medical Center (September 6, 2004). "Long-term Effects Of Carbon Monoxide Poisoning Are An Autoimmune Reaction". ScienceDaily. Retrieved 2007-04-13.
  2. Phillips, Helen (July 3, 2006). "'Rewired brain' revives patient after 19 years". New Scientist. Retrieved 2007-04-13.
  3. Mayo Clinic staff (May 17, 2006). "Coma: Coping skills". Mayo Clinic. Retrieved 2007-04-13.
  4. Wijdicks EFM, Wijdicks CA (2006). "The portrayal of coma in contemporary motion pictures". Neurology 66 (9): 1300–1303. PMID 16682658.
  5. Konig P et al (1992). "Psychological counseling of the family of patients with craniocerebral injuries (psychological family counseling of severely ill patients)". Zentralbl Neurochir 53 (2): 78–84. PMID 1636327.
  6. Montgomery V et al (2002). "The effect of severe traumatic brain injury on the family". J Trauma 52 (6): 1121–4. PMID 12045640.