DHX9

Jump to navigation Jump to search


DEAH (Asp-Glu-Ala-His) box polypeptide 9
PDB rendering based on 1uil.
Available structures
PDB Ortholog search: Template:Homologene2PDBe PDBe, Template:Homologene2uniprot RCSB
Identifiers
Symbols DHX9 ; DDX9; LKP; NDH II; NDHII; RHA
External IDs Template:OMIM5 Template:MGI HomoloGene1039
RNA expression pattern
More reference expression data
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

DEAH (Asp-Glu-Ala-His) box polypeptide 9, also known as DHX9, is a human gene.[1]

DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene encodes a DEAD box protein with RNA helicase activity. It may participate in melting of DNA:RNA hybrids, such as those that occur during transcription, and may play a role in X-linked gene expression. It contains 2 copies of a double-stranded RNA-binding domain, a DEXH core domain and an RGG box. The RNA-binding domains and RGG box influence and regulate RNA helicase activity.[1]

References

  1. 1.0 1.1 "Entrez Gene: DHX9 DEAH (Asp-Glu-Ala-His) box polypeptide 9".

Further reading

  • Lee CG, Hurwitz J (1992). "A new RNA helicase isolated from HeLa cells that catalytically translocates in the 3' to 5' direction". J. Biol. Chem. 267 (7): 4398–407. PMID 1537828.
  • Lee CG, Zamore PD, Green MR, Hurwitz J (1993). "RNA annealing activity is intrinsically associated with U2AF". J. Biol. Chem. 268 (18): 13472–8. PMID 7685763.
  • Lee CG, Hurwitz J (1993). "Human RNA helicase A is homologous to the maleless protein of Drosophila". J. Biol. Chem. 268 (22): 16822–30. PMID 8344961.
  • Abdelhaleem MM, Hameed S, Klassen D, Greenberg AH (1996). "Leukophysin: an RNA helicase A-related molecule identified in cytotoxic T cell granules and vesicles". J. Immunol. 156 (6): 2026–35. PMID 8690889.
  • Zhang S, Grosse F (1997). "Domain structure of human nuclear DNA helicase II (RNA helicase A)". J. Biol. Chem. 272 (17): 11487–94. PMID 9111062.
  • Nakajima T, Uchida C, Anderson SF; et al. (1997). "RNA helicase A mediates association of CBP with RNA polymerase II". Cell. 90 (6): 1107–12. PMID 9323138.
  • Loor G, Zhang SJ, Zhang P; et al. (1998). "Identification of DNA replication and cell cycle proteins that interact with PCNA". Nucleic Acids Res. 25 (24): 5041–6. PMID 9396813.
  • Lee CG, Eki T, Okumura K; et al. (1998). "Molecular analysis of the cDNA and genomic DNA encoding mouse RNA helicase A.". Genomics. 47 (3): 365–71. PMID 9480750.
  • Anderson SF, Schlegel BP, Nakajima T; et al. (1998). "BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A.". Nat. Genet. 19 (3): 254–6. doi:10.1038/930. PMID 9662397.
  • Lee CG, da Costa Soares V, Newberger C; et al. (1998). "RNA helicase A is essential for normal gastrulation". Proc. Natl. Acad. Sci. U.S.A. 95 (23): 13709–13. PMID 9811865.
  • Li J, Tang H, Mullen TM; et al. (1999). "A role for RNA helicase A in post-transcriptional regulation of HIV type 1". Proc. Natl. Acad. Sci. U.S.A. 96 (2): 709–14. PMID 9892698.
  • Tang H, McDonald D, Middlesworth T; et al. (1999). "The carboxyl terminus of RNA helicase A contains a bidirectional nuclear transport domain". Mol. Cell. Biol. 19 (5): 3540–50. PMID 10207077.
  • Westberg C, Yang JP, Tang H; et al. (2000). "A novel shuttle protein binds to RNA helicase A and activates the retroviral constitutive transport element". J. Biol. Chem. 275 (28): 21396–401. doi:10.1074/jbc.M909887199. PMID 10748171.
  • Tang H, Wong-Staal F (2000). "Specific interaction between RNA helicase A and Tap, two cellular proteins that bind to the constitutive transport element of type D retrovirus". J. Biol. Chem. 275 (42): 32694–700. doi:10.1074/jbc.M003933200. PMID 10924507.
  • Lee CG, Eki T, Okumura K; et al. (2000). "The human RNA helicase A (DDX9) gene maps to the prostate cancer susceptibility locus at chromosome band 1q25 and its pseudogene (DDX9P) to 13q22, respectively". Somat. Cell Mol. Genet. 25 (1): 33–9. PMID 10925702.
  • Reddy TR, Tang H, Xu W, Wong-Staal F (2000). "Sam68, RNA helicase A and Tap cooperate in the post-transcriptional regulation of human immunodeficiency virus and type D retroviral mRNA". Oncogene. 19 (32): 3570–5. doi:10.1038/sj.onc.1203676. PMID 10951562.
  • Pellizzoni L, Charroux B, Rappsilber J; et al. (2001). "A functional interaction between the survival motor neuron complex and RNA polymerase II". J. Cell Biol. 152 (1): 75–85. PMID 11149922.
  • Takasaki Y, Kogure T, Takeuchi K; et al. (2001). "Reactivity of anti-proliferating cell nuclear antigen (PCNA) murine monoclonal antibodies and human autoantibodies to the PCNA multiprotein complexes involved in cell proliferation". J. Immunol. 166 (7): 4780–7. PMID 11254741.
  • Yang JP, Tang H, Reddy TR, Wong-Staal F (2001). "Mapping the functional domains of HAP95, a protein that binds RNA helicase A and activates the constitutive transport element of type D retroviruses". J. Biol. Chem. 276 (33): 30694–700. doi:10.1074/jbc.M102809200. PMID 11402034.
  • Aratani S, Fujii R, Oishi T; et al. (2001). "Dual roles of RNA helicase A in CREB-dependent transcription". Mol. Cell. Biol. 21 (14): 4460–9. doi:10.1128/MCB.21.14.4460-4469.2001. PMID 11416126.

Template:WikiDoc Sources