DNA Methylation

Jump to navigation Jump to search

WikiDoc Resources for DNA Methylation

Articles

Most recent articles on DNA Methylation

Most cited articles on DNA Methylation

Review articles on DNA Methylation

Articles on DNA Methylation in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on DNA Methylation

Images of DNA Methylation

Photos of DNA Methylation

Podcasts & MP3s on DNA Methylation

Videos on DNA Methylation

Evidence Based Medicine

Cochrane Collaboration on DNA Methylation

Bandolier on DNA Methylation

TRIP on DNA Methylation

Clinical Trials

Ongoing Trials on DNA Methylation at Clinical Trials.gov

Trial results on DNA Methylation

Clinical Trials on DNA Methylation at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on DNA Methylation

NICE Guidance on DNA Methylation

NHS PRODIGY Guidance

FDA on DNA Methylation

CDC on DNA Methylation

Books

Books on DNA Methylation

News

DNA Methylation in the news

Be alerted to news on DNA Methylation

News trends on DNA Methylation

Commentary

Blogs on DNA Methylation

Definitions

Definitions of DNA Methylation

Patient Resources / Community

Patient resources on DNA Methylation

Discussion groups on DNA Methylation

Patient Handouts on DNA Methylation

Directions to Hospitals Treating DNA Methylation

Risk calculators and risk factors for DNA Methylation

Healthcare Provider Resources

Symptoms of DNA Methylation

Causes & Risk Factors for DNA Methylation

Diagnostic studies for DNA Methylation

Treatment of DNA Methylation

Continuing Medical Education (CME)

CME Programs on DNA Methylation

International

DNA Methylation en Espanol

DNA Methylation en Francais

Business

DNA Methylation in the Marketplace

Patents on DNA Methylation

Experimental / Informatics

List of terms related to DNA Methylation


DNA methylation is a type of chemical modification of DNA that can be inherited and subsequently removed without changing the original DNA sequence. As such, it is part of the epigenetic code and is also the most well characterized epigenetic mechanism.[citation needed]

DNA methylation involves the addition of a methyl group to DNA — for example, to the number 5 carbon of the cytosine pyrimidine ring — with the effect of reducing gene expression. DNA methylation at the 5 position of cytosine has been found in every vertebrate examined. In adult somatic tissues, DNA methylation typically occurs in a CpG dinucleotide context; non-CpG methylation is prevalent in embryonic stem cells.[1][2]

In plants, cytosines are methylated both symmetrically (CpG or CpNpG) and asymmetrically (CpNpNp), where N can be any nucleotide. Some organisms, such as fruit flies, exhibit virtually no DNA methylation.

In mammals

Between 60-90% of all CpGs are methylated in mammals.[3] Unmethylated CpGs are grouped in clusters called "CpG islands" that are present in the 5' regulatory regions of many genes. In many disease processes such as cancer, gene promoter CpG islands acquire abnormal hypermethylation, which results in heritable transcriptional silencing. DNA methylation may impact the transcription of genes in two ways. First, the methylation of DNA may itself physically impede the binding of transcriptional proteins to the gene and secondly, and likely more importantly, methylated DNA may be bound by proteins known as methyl-CpG-binding domain proteins (MBDs). MBD proteins then recruit additional proteins to the locus, such as histone deacetylases and other chromatin remodelling proteins that can modify histones, thereby forming compact, inactive chromatin termed silent chromatin. This link between DNA methylation and chromatin structure is very important. In particular, loss of methyl-CpG-binding protein 2 (MeCP2) has been implicated in Rett syndrome and methyl-CpG binding domain protein 2 (MBD2) mediates the transcriptional silencing of hypermethylated genes in cancer.

In humans

In humans, the process of DNA methylation is carried out by three enzymes, DNA methyltransferase 1, 3a, and 3b (DNMT1, DNMT3a, DNMT3b). It is thought that DNMT3a and DNMT3b are the de novo methyltransferases that set up DNA methylation patterns early in development. DNMT1 is the proposed maintenance methyltransferase that is responsible for copying DNA methylation patterns to the daughter strands during DNA replication. DNMT3L is a protein that is homologous to the other DNMT3s but has no catalytic activity. Instead, DNMT3L assists the de novo methyltransferases by increasing their ability to bind to DNA and stimulating their activity. Finally, DNMT2 (TRDMT1) has been identified as a DNA methyltransferase homolog, containing all 10 sequence motifs common to all DNA methyltransferases; however, DNMT2 (TRDMT1) does not methylate DNA but instead methylates a small RNA.

Since many tumor suppressor genes are silenced by DNA methylation during carcinogenesis, there have been attempts to re-express these genes by inhibiting the DNMTs. 5-aza-2'-deoxycytidine (decitabine) is a nucleoside analog that inhibits DNMTs by trapping them in a covalent complex on DNA by preventing the β-elimination step of catalysis, thus resulting in the enzymes' degradation. However, for decitabine to be active, it must be incorporated into the genome of the cell, but this can cause mutations in the daughter cells if the cell does not die. Additionally, decitabine is toxic to the bone marrow, which limits the size of its therapeutic window. These pitfalls have led to the development of antisense RNA therapies that target the DNMTs by degrading their mRNAs and preventing their translation. However, it is currently unclear if targeting DNMT1 alone is sufficient to reactivate tumor suppressor genes silenced by DNA methylation.

In plants

Significant progress has been made in understanding DNA methylation in plants, specifically in the model plant, Arabidopsis thaliana. Whereas in mammals methylation mainly occurs on the cytosine in a CpG context, in plants the cytosine can be methylated in the CpG, CpNpG, and CpNpN context, where N represents any nucleotide but guanine.

The principal Arabidopsis DNA methyltransferase enzymes, which transfer and covalently attach methyl groups onto DNA, are DRM2, MET1, and CMT3. Both the DRM2 and MET1 proteins share significant homology to the mammalian methyltransferases DNMT3 and DNMT1, respectively, whereas the CMT3 protein is unique to the plant kingdom. There are currently two classes of DNA methyltransferases: 1) the de-novo class, or enzymes that create new methylation marks on the DNA, and 2) a maintenance class that recognizes the methylation marks on the parental strand of DNA and transfers new methylation to the daughters strands after DNA replication. DRM2 is the only enzyme that has been implicated as a de-novo DNA methyltransferase. DRM2 has also been shown, along with MET1 and CMT3 to be involved in maintaining methylation marks through DNA replication.[4] Other DNA methyltransferases are expressed in plants but have no known function (see the Chromatin Database).

Currently, it is not clear how the cell determines the locations of de-novo DNA methylation, but evidence suggests that for many, though not all locations, RNA-directed DNA methylation (RdDM) is involved. In RdDM, specific RNA transcripts are produced from a genomic DNA template, and this RNA forms secondary structures called double-stranded RNA molecules.[5] The double-stranded RNAs, through either the small interfering RNA (siRNA) or microRNA (miRNA) pathways, direct de-novo DNA methylation of the original genomic location that produced the RNA.[5] This sort of mechanism is thought to be important in cellular defense against RNA viruses and/or transposons both of which often form a double-stranded RNA that can be mutagenic to the host genome. By methylating their genomic locations, through a still-poorly-understood mechanism, they are shut off and are no longer active in the cell, protecting the genome from their mutagenic effect.

In fungi

Many fungi apparently have low levels (0.1 to 0.5%) of cytosine methylation while other fungi have as much as 5% of the genome methylated[6]. This value seems to vary both among species and among isolates of the same species[7]. There is also evidence that DNA methylation may be involved in state-specific control of gene expression in fungi.

Although brewers yeast (Saccharomyces) and fission yeast (Schizosaccharomyces) have very little DNA methylation, the model filamentous fungus Neurospora crassa has a well characterized methylation system[8]. Several genes control methylation in Neurospora and mutation of the DNA methyl transferase, dim-2, eliminates all DNA methylation in Neurospora but does not affect growth or sexual reproduction. While the Neurospora genome has very little repeated DNA, half of the methylation occurs in repeated DNA including transposon relics and centromeric DNA.The ability to evaluate other important phenomena in a DNA methylase deficient genetic background makes Neurospora and important system in which to study DNA methylation.

See also

References

  1. J. E. Dodge, B. H. Ramsahoye, Z. G. Wo, M. Okano and E. Li (2002). "De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation". Gene. 289 (1–2): 41–48. doi:10.1016/S0378-1119(02)00469-9.
  2. T. R. Haines, D. I. Rodenhiser and P. J. Ainsworth (2001). "Allele-Specific Non-CpG Methylation of the Nf1 Gene during Early Mouse Development". Developmental Biology. 240 (2): 585–598. doi:10.1006/dbio.2001.0504.
  3. Tucker KL. (2001) "Methylated cytosine and the brain: a new base for neuroscience". Neuron. 30(3): 649-52. doi:10.1016/S0896-6273(01)00325-7. PMID 11430798
  4. X. Cao and S. E. Jacobsen (2002). "Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes". PNAS. 99 (90004): 16491–16498. doi:10.1073/pnas.162371599. PMID 12151602.
  5. 5.0 5.1 W. Aufsatz, M. F. Mette, J. van der Winden, A. J. M. Matzke and M. Matzke (2002). "RNA-directed DNA methylation in Arabidopsis". PNAS. 99 (90004): 16499–16506. doi:10.1073/pnas.162371499. PMID 12169664.
  6. F Antequera, M Tamame, JR Villanueva and T Santos (1984). "DNA methylation in the fungi". J. Biol. Chem. 259 (13): 8033–8036.
  7. Thomas Binz, Nisha D'Mello, Paul A. Horgen (1998). "A Comparison of DNA Methylation Levels in Selected Isolates of Higher Fungi". Mycologia. 90 (5): 785–790. doi:10.2307/3761319.
  8. Eric U. Selker, Nikolaos A. Tountas, Sally H. Cross, Brian S. Margolin, Jonathan G. Murphy, Adrian P. Bird and Michael Freitag (2003). "The methylated component of the Neurospora crassa genome". Nature. 422 (6934): 893–897. doi:10.1038/nature01564.

External links

Template:Regulation of gene expression

de:DNA-Methylierung it:Metilazione del DNA ur:ڈی این اے میثائلیت Template:WH Template:WS