Dock5 shares significant sequence identity with Dock180, the archetypal member of the DOCK family. It is therefore predicted to partake in similar interactions although this has yet to be demonstrated. Indeed, the function and signalling properties of Dock5 are poorly understood thus far. Dock5 has been identified as a crucial signalling protein in osteoclasts,[3] and suppression of Dock5 expression with shRNA has been shown to inhibit survival and differentiation of osteoclast precursor cells.[4] In addition, a mutation in Dock5 has been associated with the rupture of murine lens cataracts.[5] In zebrafish Dock5 has been implicated in myoblast fusion.[6]
↑Côté JF, Vuori K (December 2002). "Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity". J. Cell Sci. 115 (Pt 24): 4901–13. doi:10.1242/jcs.00219. PMID12432077.
↑Ha BG, Hong JM, Park JY (July 2008). "Proteomic profile of osteoclast membrane proteins: identification of Na+/H+ exchanger domain containing 2 and its role in osteoclast fusion". Proteomics. 8 (13): 2625–39. doi:10.1002/pmic.200701192. PMID18600791.
↑Brazier H, Stephens S, Ory S (September 2006). "Expression profile of RhoGTPases and RhoGEFs during RANKL-stimulated osteoclastogenesis: identification of essential genes in osteoclasts". J. Bone Miner. Res. 21 (9): 1387–98. doi:10.1359/jbmr.060613. PMID16939397.
↑Moore CA, Parkin CA, Bidet Y, Ingham PW (September 2007). "A role for the Myoblast city homologues Dock1 and Dock5 and the adaptor proteins Crk and Crk-like in zebrafish myoblast fusion". Development. 134 (17): 3145–53. doi:10.1242/dev.001214. PMID17670792.
Further reading
Meller N, Merlot S, Guda C (2005). "CZH proteins: a new family of Rho-GEFs". J. Cell Sci. 118 (Pt 21): 4937–46. doi:10.1242/jcs.02671. PMID16254241.