Emtricitabine rilpivirine tenofovir microbiology

Jump to navigation Jump to search
Emtricitabine rilpivirine tenofovir
COMPLERA® FDA Package Insert
Description
Clinical Pharmacology
Microbiology
Indications and Usage
Contraindications
Warnings and Precautions
Adverse Reactions
Drug Interactions
Overdosage
Dosage and Administration
How Supplied
Labels and Packages

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mohamed Moubarak, M.D. [2]

Microbiology

  • Mechanism of Action

Emtricitabine: Emtricitabine, a synthetic nucleoside analog of cytidine, is phosphorylated by cellular enzymes to form emtricitabine 5'-triphosphate. Emtricitabine 5'-triphosphate inhibits the activity of the HIV-1 RT by competing with the natural substrate deoxycytidine 5'-triphosphate and by being incorporated into nascent viral DNA which results in chain termination. Emtricitabine 5′-triphosphate is a weak inhibitor of mammalian DNA polymerase α, β, ε, and mitochondrial DNA polymerase γ.

Rilpivirine: Rilpivirine is a diarylpyrimidine non-nucleoside reverse transcriptase inhibitor of HIV-1 and inhibits HIV-1 replication by non-competitive inhibition of HIV-1 RT. Rilpivirine does not inhibit the human cellular DNA polymerases α, β, and mitochondrial DNA polymerase γ.

Tenofovir Disoproxil Fumarate: Tenofovir DF is an acyclic nucleoside phosphonate diester analog of adenosine monophosphate. Tenofovir DF requires initial diester hydrolysis for conversion to tenofovir and subsequent phosphorylations by cellular enzymes to form tenofovir diphosphate. Tenofovir diphosphate inhibits the activity of HIV-1 RT by competing with the natural substrate deoxyadenosine 5′-triphosphate and, after incorporation into DNA, by DNA chain termination. Tenofovir diphosphate is a weak inhibitor of mammalian DNA polymerases α, β, and mitochondrial DNA polymerase γ.

  • Antiviral Activity

Emtricitabine, Rilpivirine, and Tenofovir Disoproxil Fumarate: The triple combination of emtricitabine, rilpivirine, and tenofovir was not antagonistic in cell culture.

Emtricitabine: The antiviral activity of emtricitabine against laboratory and clinical isolates of HIV-1 was assessed in lymphoblastoid cell lines, the MAGI-CCR5 cell line, and peripheral blood mononuclear cells. The 50% effective concentration (EC50) values for emtricitabine were in the range of 0.0013–0.64 µM. Emtricitabine displayed antiviral activity in cell culture against HIV-1 clades A, B, C, D, E, F, and G (EC50 values ranged from 0.007–0.075 µM) and showed strain specific activity against HIV-2 (EC50 values ranged from 0.007–1.5 µM). In drug combination studies of emtricitabine with nucleoside reverse transcriptase inhibitors (abacavir, lamivudine, stavudine, tenofovir, zidovudine), non-nucleoside reverse transcriptase inhibitors (delavirdine, efavirenz, nevirapine, and rilpivirine), and protease inhibitors (amprenavir, nelfinavir, ritonavir, saquinavir), no antagonistic effects were observed.

Rilpivirine: Rilpivirine exhibited activity against laboratory strains of wild-type HIV-1 in an acutely infected T-cell line with a median EC50 value for HIV-1IIIB of 0.73 nM. Rilpivirine demonstrated limited activity in cell culture against HIV-2 with a median EC50 value of 5220 nM (range 2510 to 10830 nM). Rilpivirine demonstrated antiviral activity against a broad panel of HIV-1 group M (subtype A, B, C, D, F, G, H) primary isolates with EC50 values ranging from 0.07 to 1.01 nM and was less active against group O primary isolates with EC50 values ranging from 2.88 to 8.45 nM. The antiviral activity of rilpivirine was not antagonistic when combined with the NNRTIs efavirenz, etravirine or nevirapine; N(t)RTIs abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir or zidovudine; the PIs amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir or tipranavir; the fusion inhibitor enfuvirtide; the CCR5 co-receptor antagonist maraviroc or the integrase strand transfer inhibitor raltegravir.

Tenofovir Disoproxil Fumarate: The antiviral activity of tenofovir against laboratory and clinical isolates of HIV-1 was assessed in lymphoblastoid cell lines, primary monocyte/macrophage cells and peripheral blood lymphocytes. The EC50 values for tenofovir were in the range of 0.04–8.5 µM. Tenofovir displayed antiviral activity in cell culture against HIV-1 clades A, B, C, D, E, F, G, and O (EC50 values ranged from 0.5–2.2 µM) and showed strain specific activity against HIV-2 (EC50 values ranged from 1.6 µM–5.5 µM). In drug combination studies of tenofovir with NRTIs (abacavir, didanosine, emtricitabine, lamivudine, stavudine, and zidovudine), NNRTIs (delavirdine, efavirenz, nevirapine, and rilpivirine), and PIs (amprenavir, indinavir, nelfinavir, ritonavir, saquinavir), no antagonistic effects were observed.

  • Resistance

In Cell Culture

Emtricitabine and Tenofovir Disoproxil Fumarate: HIV-1 isolates with reduced susceptibility to emtricitabine or tenofovir have been selected in cell culture. Reduced susceptibility to emtricitabine was associated with M184V/I substitutions in HIV-1 RT. HIV-1 isolates selected by tenofovir expressed a K65R substitution in HIV-1 RT and showed a 2–4 fold reduction in susceptibility to tenofovir.

Rilpivirine: Rilpivirine-resistant strains were selected in cell culture starting from wild-type HIV-1 of different origins and subtypes as well as NNRTI resistant HIV-1. The frequently observed amino acid substitutions that emerged and conferred decreased phenotypic susceptibility to rilpivirine included: L100I, K101E, V106I and A, V108I, E138K and G, Q, R, V179F and I, Y181C and I, V189I, G190E, H221Y, F227C and M230I and L.

  • In HIV-1-Infected Subjects With No Antiretroviral Treatment History

In the Week 96 pooled resistance analysis for subjects receiving rilpivirine or efavirenz in combination with emtricitabine/tenofovir DF in the Phase 3 clinical trials C209 and C215, the emergence of resistance was greater among subjects' viruses in the rilpivirine plus emtricitabine/tenofovir DF arm compared to the efavirenz plus emtricitabine/tenofovir DF arm and was dependent on baseline viral load. In the pooled resistance analysis, 61% (47/77) of the subjects who qualified for resistance analysis (resistance analysis subjects) in the rilpivirine plus emtricitabine/tenofovir DF arm had virus with genotypic and/or phenotypic resistance to rilpivirine compared to 42% (18/43) of the resistance analysis subjects in the efavirenz plus emtricitabine/tenofovir DF arm who had genotypic and/or phenotypic resistance to efavirenz. Moreover, genotypic and/or phenotypic resistance to emtricitabine or tenofovir emerged in viruses from 57% (44/77) of the resistance analysis subjects in the rilpivirine arm compared to 26% (11/43) in the efavirenz arm.

Emerging NNRTI substitutions in the rilpivirine resistance analysis of subjects' viruses included V90I, K101E/P/T, E138K/A/Q/G, V179I/L, Y181C/I, V189I, H221Y, F227C/L and M230L, which were associated with a rilpivirine phenotypic fold change range of 2.6–621. The E138K substitution emerged most frequently during rilpivirine treatment commonly in combination with the M184I substitution. The emtricitabine and lamivudine resistance-associated substitutions M184I or V and NRTI resistance-associated substitutions (K65R/N, A62V, D67N/G, K70E, Y115F, K219E/R) emerged more frequently in the rilpivirine resistance analysis subjects than in efavirenz resistance analysis subjects (See Table 8).

NNRTI- and NRTI-resistance substitutions emerged less frequently in the resistance analysis of viruses from subjects with baseline viral loads of ≤100,000 copies/mL compared to viruses from subjects with baseline viral loads of >100,000 copies/mL: 23% (10/44) compared to 77% (34/44) of NNRTI-resistance substitutions and 20% (9/44) compared to 80% (35/44) of NRTI-resistance substitutions. This difference was also observed for the individual emtricitabine/lamivudine and tenofovir resistance substitutions: 22% (9/41) compared to 78% (32/41) for M184I/V and 0% (0/8) compared to 100% (8/8) for K65R/N. Additionally, NNRTI and/or NRTI-resistance substitutions emerged less frequently in the resistance analysis of the viruses from subjects with baseline CD4+ cell counts ≥200 cells/mm3 compared to the viruses from subjects with baseline CD4+ cell counts <200 cells/mm3: 32% (14/44) compared to 68% (30/44) of NNRTI-resistance substitutions and 27% (12/44) compared to 73% (32/44) of NRTI-resistance substitutions.

  • In Virologically-Suppressed HIV-1-Infected Subjects

Study 106: Through Week 48, four subjects who switched to COMPLERA (4 of 469 subjects, 0.9%) and one subject who maintained their ritonavir-boosted protease inhibitor-based regimen (1 of 159 subjects, 0.6%) developed genotypic and/or phenotypic resistance to a study drug. All four of the subjects who had resistance emergence on COMPLERA had evidence of emtricitabine resistance and three of the subjects had evidence of rilpivirine resistance.

  • Cross Resistance

Rilpivirine, Emtricitabine, and Tenofovir Disoproxil Fumarate:

In Cell Culture

No significant cross-resistance has been demonstrated between rilpivirine-resistant HIV-1 variants and emtricitabine or tenofovir, or between emtricitabine- or tenofovir-resistant variants and rilpivirine.

Rilpivirine:

  • Site-Directed NNRTI Mutant Virus

Cross-resistance has been observed among NNRTIs. The single NNRTI substitutions K101P, Y181I and Y181V conferred 52-fold, 15-fold and 12-fold decreased susceptibility to rilpivirine, respectively. The combination of E138K and M184I showed 6.7-fold reduced susceptibility to rilpivirine compared to 2.8-fold for E138K alone. The K103N substitution did not show reduced susceptibility to rilpivirine by itself. However, the combination of K103N and L100I resulted in a 7-fold reduced susceptibility to rilpivirine. In another study, the Y188L substitution resulted in a reduced susceptibility to rilpivirine of 9-fold for clinical isolates and 6-fold for site-directed mutants. Combinations of 2 or 3 NNRTI resistance-associated substitutions gave decreased susceptibility to rilpivirine (fold change range of 3.7–554) in 38% and 66% of mutants, respectively.

  • In HIV-1-Infected Subjects With No Antiretroviral Treatment History

Considering all of the available cell culture and clinical data, any of the following amino acid substitutions, when present at baseline, are likely to decrease the antiviral activity of rilpivirine: K101E, K101P, E138A, E138G, E138K, E138R, E138Q, V179L, Y181C, Y181I, Y181V, Y188L, H221Y, F227C, M230I or M230L.

Cross-resistance to efavirenz, etravirine and/or nevirapine is likely after virologic failure and development of rilpivirine resistance. In a pooled 96-Week analysis for subjects receiving rilpivirine in combination with emtricitabine/tenofovir DF in the Phase 3 clinical trials TMC278-C209 and TMC278-C215, 43 of the 70 (61%) rilpivirine resistance analysis subjects with post-baseline resistance data had virus with decreased susceptibility to rilpivirine (≥2.5-fold). Of these, 84% (n=36/43) were resistant to efavirenz (≥3.3 fold change), 88% (n=38/43) were resistant to etravirine (≥3.2 fold change) and 60% (n=26/43) were resistant to nevirapine (≥6 fold change). In the efavirenz arm, 3 of the 15 (20%) efavirenz resistance analysis subjects had viruses with resistance to etravirine and rilpivirine, and 93% (14/15) had resistance to nevirapine. Virus from subjects experiencing virologic failure on rilpivirine in combination with emtricitabine/tenofovir DF developed more NNRTI resistance-associated substitutions conferring more cross-resistance to the NNRTI class and had a higher likelihood of cross-resistance to all NNRTIs in the class than subjects who failed on efavirenz.

Emtricitabine: Emtricitabine-resistant isolates (M184V/I) were cross-resistant to lamivudine but retained susceptibility in cell culture to didanosine, stavudine, tenofovir, zidovudine, and NNRTIs (delavirdine, efavirenz, nevirapine, and rilpivirine). HIV-1 isolates containing the K65R substitution, selected in vivo by abacavir, didanosine, and tenofovir, demonstrated reduced susceptibility to inhibition by emtricitabine. Viruses harboring substitutions conferring reduced susceptibility to stavudine and zidovudine (M41L, D67N, K70R, L210W, T215Y/F, K219Q/E), or didanosine (L74V) remained sensitive to emtricitabine. HIV-1 containing the substitutions associated with NNRTI resistance K103N or rilpivirine-associated substitutions were susceptible to emtricitabine.

Tenofovir Disoproxil Fumarate: The K65R substitution selected by tenofovir is also selected in some HIV-1-infected patients treated with abacavir or didanosine. HIV-1 isolates with the K65R substitution also showed reduced susceptibility to emtricitabine and lamivudine. Therefore, cross-resistance among these NRTIs may occur in patients whose virus harbors the K65R substitution. HIV-1 isolates from patients (N=20) whose HIV-1 expressed a mean of 3 zidovudine-associated RT amino acid substitutions (M41L, D67N, K70R, L210W, T215Y/F, or K219Q/E/N) showed a 3.1-fold decrease in the susceptibility to tenofovir.

Subjects whose virus expressed an L74V substitution without zidovudine resistance associated substitutions (N=8) had reduced response to VIREAD. Limited data are available for patients whose virus expressed a Y115F substitution (N=3), Q151M substitution (N=2), or T69 insertion (N=4), all of whom had a reduced response.

HIV-1 containing the substitutions associated with NNRTI resistance K103N and Y181C, or rilpivirine-associated substitutions were susceptible to tenofovir.ref name="dailymed.nlm.nih.gov">"COMPLERA (EMTRICITABINE, RILPIVIRINE HYDROCHLORIDE, AND TENOFOVIR DISOPROXIL FUMARATE) TABLET, FILM COATED [GILEAD SCIENCES, INC.]". Text " accessdate" ignored (help)</ref>

References

Adapted from the FDA Package Insert.