Epithelial ovarian tumors risk factors

Jump to navigation Jump to search


Epithelial ovarian tumors Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Epithelial Ovarian Tumors from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Epithelial ovarian tumors risk factors On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Epithelial ovarian tumors risk factors

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Epithelial ovarian tumors risk factors

CDC on Epithelial ovarian tumors risk factors

Epithelial ovarian tumors risk factors in the news

Blogs on Epithelial ovarian tumors risk factors

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Epithelial ovarian tumors risk factors

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Hannan Javed, M.D.[2]

Overview

Epithelial ovarian tumors can have multiple risk factors. Genetic risk factors constitute a major proportion of all the associated risk factors.

Risk Factors

Genetic Risk Factors

BRCA Mutations and Hereditary Breast and Ovarian Cancer (HBOC)

  • Hereditary breast and ovarian cancer (HBOC) is an autosomal dominant disorder caused by mutations in BRCA1 and BRCA2 genes that are responsible for DNA repair in homologous recombination pathway.[1][2]
  • Individuals with this disorder are at risk of developing breast (lifetime risk is 30-80%) and ovarian cancer (lifetime risk is 30-50%), along with other malignancies such as pancreatic, stomach, laryngeal, fallopian tube and prostate cancer.[1][2]
  • The reason for increased susceptibility to ovarian and epithelial cancer is not fully understood but but may be explained by repression of the transcription of hormone-mediated signalling factors or production of reactive oxygen species during menstrual cycle mediating DNA damage.[2][3][4]

Mismatch Repair Genes and Lynch Syndrome

  • Lynch syndrome (LS), also known as hereditary nonpolyposis colon cancer (HNPCC), is characterized by germline mutations in DNA mismatch repair genes MLH1, MSH2, MSH6, MLH3, and PMS2.[1][5][6]
  • A simplified version of repair mechanism by mismatch repair genes products is described below:[6][7]

MutS Homologs (MSHs) Recognize the DNA Mismatch → MutS Homologs (MSHs) Recruit MutL Homologs (MLHs) → Excision of Mismatched DNA → DNA Polymerase Re-synthesizes DNA

  • Accounted for 10-15% of all ovarian cancers, this syndrome is caused by inherited mutation in one allele and then loss of second allele (secondary hit).[1][8]
  • The most common malignancies in Lynch syndrome are colorectal carcinoma and gynecological cancers, endometrial carcinoma being the most common among gynecological malignancies followed by ovarian carcinoma.[8]
  • Other malignancies that have been observed in lynch syndrome are gastric cancer, small bowel malignancies, hepatobiliary epithelial carcinoma, uroepithelial epithelial carcinoma and brain tumors.[8][9]

TP53 Mutation and Li-Fraumeni Syndrome

  • Li-Fraumeni Syndrome is an autosomal dominant disorder caused by germline mutation in TP53, the most mutated gene in human cancers. The most common of the mutations are missense mutations.[10][11]
  • TP53 encodes for a transcription factor that responds to various cell signals and is a major regulator of the cell cycle. It is involved in variety of cellular functions such as cellular proliferation and cell cycle, apoptosis, and stability & integrity of the genome.[12][11]
  • * Mutations in TP53 resulting defective or decreased p53 are not only implicated in pathogenesis but also impact prognosis, causing worse survival rate among the individuals with the mutations.[12][13]
  • These mutations are most commonly observed in epithelial ovarian cancer (47%), colorectal carcinoma (43%), head/neck cancer (42%), and esophageal cancer (41%). Breast cancer, sarcoma and brain, and adrenocortical carcinoma account for majority of the tumors encountered in Li-Fraumeni syndrome.[12][14]

PTEN Mutations and Cowden Syndrome

  • An autosomal-dominant syndrome , caused by mutations in PTEN gene, has been associated with a variety of neoplastic/non-neoplastic lesions and clinical manifestations throughout the body including:[15][16][17]
  • Epithelial ovarian cancer
  • Hamartomatous lesions of skin and organs
  • Macrocephaly
  • Breast cancer
  • Thyroid cancer
  • Endometrial cancer

RAD51 Mutations

  • RAD51 is a recombinase that binds with eight BRC repeats of BRCA2. This allows RAD51 to be recruited to double stranded DNA breaks, an essential step in homologous recombination double stranded DNA repair.[2][18][19][10]
  • Some studies have suggested risk for developing ovarian cancer in RAD51 mutations is as high as six-fold. There is also an increased risk for developing breast cancer.[10][20][21]

PALB2 Mutations

  • Partner and localizer of BRCA2 (PALB2) physically connects BRCA1 and BRCA2 through N-terminal coiled-coil domain and the C terminus. This BRCA2 interacting protein plays an essential role in DNA repair.[2][22][23]
  • The association of PALB2 with ovarian cancer has not be fully established but an increased risk for breast cancer, pancreatic cancer and ovarian cancer has been observed in some studies..[5][24][25]

CHEK2 Mutations

  • CHEK2 gene encodes for a protein called checkpoint kinase 2 (CHK2). It interacts with other regulators and tumor suppressors such as TP53 to play a role in tumor suppression through cell-cycle regulation and apoptosis.
  • There are conflicting results regarding association of CHEK2 with ovarian cancers. Some studies have suggested no association but the limitations were observed because of focus on only certain allelic mutations in CHEK2.

Mre11 Complex Alterations

  • Mre11 Complex is involved in DNA repair and comprises of meiotic recombination 11 (MRE11), RAD50 and Nijmegen breakage syndrome 1 (NBS1; also known as nibrin).
  • This complex plays an essential role in homologous recombination mediated DNA repair, non-homologous end-joining (NHEJ) and alternative non-homologous end-joining (A-NHEJ) pathways, all involved in double stranded DNA repair.
  • Some studies have suggested an increased susceptibility to ovarian and breast cancers in hereditary mutations in Mre11 complex.

BARD1 Mutations

  • This gene encodes for a peptide that interacts with BRCA1 and forms a heterodiamer that plays a role in homologous recombination mediated repair of double stranded DNA breaks.
  • Mutations in BARD1 have been associated with breast and ovarian cancer.

BRIP1 Mutations

  • BRCA1-interacting protein 1 (BRIP1) encodes for a helicase that interacts with BRCA1 in homologous recombination mediated repair of double stranded DNA breaks.
  • Mutation in BRIP1 gene association with familial ovarian cancer have been demonstrated in some studies. There also been proposed risk for breast cancer but it has yet to be established
Possible Genetic Alteration In Epithelial Ovarian Cancers
Protein Normal Function Function in Malignancy
Human Epidermal growth factor receptor (HER-1)[26][27]
  • Promotes cell proliferation
  • Opposes apoptosis
  • Regulates differentiation
  • Activating mutation
  • Increased cellular proliferation
  • Inhibition of apoptosis
Human Epidermal Growth Factor Receptor 2 (HER-2)[26][27]
  • Promotes cell prolifeartion
  • Inhibition of apoptosis
  • Regulates differentiation
  • Activating mutation
  • Increased cellular proliferation
  • Inhibition of apoptosis
Non-receptor tyrosine kinase Src[28][29] Involved in regulation of:
  • Gene transcription
  • Angiogenesis
  • Cellular adhesion
  • Cellular proliferation
  • Activating mutation
  • Increased angiogenesis
  • Decreased cellular adhesion
  • Increased tumor metastasis
  • Increased cellular proliferation
Colony stimulating factor-1/fms[30][31][32]
  • Increased macrophage survival
  • Increased macrophage proliferation
  • Increased macrophage differentiation
  • Activating mutation
  • Stimulation of tumor cell proliferation
  • Increased angiogenesis
  • Promotes tumor invasion
  • Increased metastasis
  • Decreased anoikis
Insulin-like growth factor/receptor ILGF/ILGFR[33][34][35]
  • Promotes growth
  • Increased survival
  • Activating mutation
  • Increased proliferation
  • Enhanced survival
  • Suppression of cell cycle regulators
k-ras[36][37]
  • Cellular proliferation
  • Cell survival
  • Activating mutation
  • Increased proliferation
  • Enhanced survival
b-raf[38][39]
  • Cellular proliferation
  • Cellular differentiation
  • Activating mutation
  • Increased proliferation
  • Enhanced growth
Transforming growth factor-β[40][41][42]
  • May function as a tumor suppressor and a promoter
  • Promotes growth arrest
  • Maintains cellular homeostasis
  • Increased proliferation
  • Decreased apoptosis
  • Epithelial-to-mesenchymal transition
  • Sustained angiogenesis
  • Evasion of immune surveillance
  • Metastasis
myc[43][44][45]
  • Derives cellular proliferation
  • Increased growth
  • Cell-cycle mediator
  • Inhibits apoptosis
  • Stem-cell renewal
  • Activating mutation
  • Increased proliferation
  • Decreased apoptosis
  • Increased metabolism in tumor cells
Cyclin D/Cdk4/6[46][47][48]
  • Cell-cycle mediator
  • Controls G1 length
  • Activating mutation
  • Decreased G1 length
  • Increased proliferation
  • Increased angiogenesis
Cyclin E/Cdk2[49][50][51]
  • Cellular proliferation
  • Cell-cycle mediator
  • Assembly of the pre-replication complex
  • Promotes G0 to cell cycle entry
  • Promotes G1 to S phase transition
  • Decreased apoptosis
  • Activating mutation
  • Increased cellular proliferation
  • Impaired apoptosis
  • Increased cellular survival
Cyclin B/Cdk1[52][53][54]
  • Cell-cycle mediator
  • Promotes G2 to M phase transition
  • Activating mutation
  • Increased cellular proliferation
  • Promotes malignant transformation
p16[55][56][57]
  • Member of the INK4 family of CDK inhibitors
  • Inhibits Cyclin D/Cdk4/6
  • Decreased G1 to S phase transition
  • Lost or downregulated
  • Decreased G1 length
  • Increased proliferation
  • Increased angiogenesis
p27 (kip-1)[58][59][60]
  • Inhibitor of Cyclin E/Cdk2
  • Mediates cell cycle arrest
  • Decreased G1 to S phase transition
  • May act as oncogen and promote proliferation
  • Lost or dysregulated
  • Increase in cell proliferation
  • Impaired apoptosis
p21 (WAF-1)[61][62][63]
  • Inhibits cyclin-dependant kinases
  • Cell-cycle arrest
  • Decreased proliferation
  • Promotes cellular differentiation
  • May inhibit/promote apoptosis
  • May act as oncogen and promote proliferation
  • Lost or dysregulated
  • Increase in cell proliferation
  • Decreased cellular differentiation
  • Decreased apoptosis
  • Correlates positively
    • Tumor grade
    • Invasiveness
    • Aggressiveness
Nuclear factor-κB[64][65][66]
  • A transcription factor involved in regulation of
    • Immune response to inflammation
    • Expression of cytokines, chemokines, and adhesion molecules
    • Cell cycle
    • Apoptosis
  • May function as a tumor suppressor and a promoter
  • Dysregulated
  • Increased angiogenesis
  • Enhanced tumor growth
  • Induces resistance to chemotherapy by acting as anti-apoptosis
NOEY(ARHI)[67][68][69][70]
  • Inhibits cell growth
  • Induces apoptosis
  • Inhibits tumor cells migration through chemotaxis and haptotaxis
  • Inactivating mutation
  • Enhanced tumor growth
  • Decreased apoptosis
  • Increased chances for metastasis
PIP3/Akt[71][72]
  • Akt is activated by PIP3 and plays a role in:
    • Regulation of cellular growth
    • Cell cycle progression
    • Regulation of glucose metabolism
    • Genome stability
    • Gene transcription
    • Protein synthesis
    • Neovascularization
    • Promotes cell survival by blocking apoptosis
  • Activating mutations
  • Increased cellular proliferation
  • Increased tumor cells survival
  • Increased tumor cells migration
  • Increased tumor cells invasion
  • Chemotherapy resistance
  • Decreased apoptosis
  • May promote angiogenesis
PTEN[73][74][75]
  • Suppresses Akt and thus regulates cell cycle, cellular growth and apoptosis
  • Regulates self-renewal and differentiation of human stem cells
  • Regulates oocyte growth and follicular activation
  • Regulates chemotaxis of neutrophils
  • Inhibit cell invasion and migration
  • Deletion or inactivating mutation
  • Increased cellular proliferation
  • Increased tumor cells survival
  • Increased tumor cells migration
  • Increased tumor cells invasion
  • Decreased apoptosis
p53[76][77][78]
  • A transcription factor that:
    • Regulates cell cycle
    • Promotes DNA damage repair
    • Promotes apoptosis
    • Maintains genomic integrity
  • Loss results in:
    • DNA damage and carcinogenesis
    • Increased tumor cell growth and survival
    • Increased metastasis
    • Decreased apoptosis
    • Resistance to chemotherapy
BRCA1[2][79][80]
  • A tumor suppressor that mediates double stranded DNA repair through
    • Homologous recombination pathway
    • Non-homologous end joining pathway
  • Activates checkpoints in cell cycle
  • Maintains genomic integrity
  • Mutations are responsible for hereditary breast & ovarian tumors
  • Loss results in
    • DNA damage and carcinogenesis
    • Increased tumor cell growth and survival
BRCA2[2][79][80]
  • A tumor suppressor that mediates double stranded DNA repair through
    • Homologous recombination pathway
  • Maintains genomic integrity
  • Protects replication fork and replication fidelity
  • Mutations are responsible for hereditary breast & ovarian tumors
  • Loss results in
    • DNA damage and carcinogenesis
    • increased tumor cell growth and survival
  • Defects in maintenance the length of the nascent strand of DNA
MLH1/MSH2[81][82][83]
  • Tumor suppressors that
  • Mediates DNA damage repair
  • Maintains genomic integrity
  • Possible regulation of cell cycle
  • Loss results in:
    • DNA damage and carcinogenesis
    • Increased survival
    • Resistance to chemotherapy
    • Chromosomal instability
    • Microsatellite instability (MSI)
    • The cytosine phosphate guanine (CpG) island methylator phenotype (CIMP)
Fas ligand[84][85][86]
  • Binds to Fas receptor and induces apoptosis
  • Expressed mainly on T-lymphocytes
  • May induce apoptosis in cancer cells and virus infected cells
  • May also be involved in
    • Liver regeneration following partial hepatectomy
    • Neurite outgrowth
  • Most tumor cells are resistant to Fas-FasL mediated apoptosis
  • Tumor cells express FasL to induce apoptosis in cytotoxic lymphocytes
  • Promotes tumor cells survival
  • Enhances tumor cells invasion
  • Increased tumor cells migration
Human leukocyte antigen-G[87][88][89]
  • Inhibits T-cell function through
    • Inhibiting proliferation
    • Causing cytotoxicity
    • Inducing apoptosis
    • Cytokine production in B lymphocytes
    • Inhibiting differentiation
  • Inhibits proliferation and cytotoxicity of natural killer cells
  • Promotes angiogenesis
  • Inhibits chemotaxis
  • Promotes progression of cancer through evasion of immune response by
    • Inhibiting T-cell functions by inducing apoptosis and decreased proliferation
    • Inhibiting T-cell differentiation through various mechanisms
  • Inhibits proliferation and cytotoxicity of natural killer cells
  • Promotes angiogenesis
  • Inhibits chemotaxis of cytotoxic cells
hTERT[90][91][92]
  • Maintains telomeres length
  • Promotes replication
  • Up-regulated in majority of human cancers
  • Provides limitless replication ability to cancer cells
Vascular endothelial growth factor/Vascular endothelial

growth factor receptor[93][94][95]

  • Stimulates angiogenesis through
    • increased endothelial cell survival
    • Increased endothelial cell proliferation
    • increased endothelial cell migration
  • Increases vascular permeability
  • May regulate fibroblasts in the stroma of tumors
  • May effect tumor stem cells
  • Promotes angiogenesis
  • Promotes tumor cells growth
  • May initiate carcinogenesis
  • Promotes invasion and metastasis of tumor cells
Interleukin-8[96][97][98]
  • Chemokine produced to recruit leukocytes and myeloid-derived suppressor cells
  • Promotes epithelial-to-mesenchymal transition
  • Promotes infection resolution
  • Promotes angiogenesis
  • Promotes epithelial-to-mesenchymal transition in tumor cells
  • Promotes resistance to chemotherapy
  • Tumor progression through immunosuppressive and pro-tumorigenic immune cells
  • Promotes angiogenesis
  • Promotes invasion and metastasis
EphA2[99][100][101]
  • Promotes angiogenesis
  • Plays a key role in development of
    • Lens
    • Inner ear
    • Mammary glands
  • Promotes kidney repair following injury
  • Promotes bone remodeling bone remodeling
  • Over-expressed in ovarian epithelial cancer
  • Promotes tumor initiation
  • Promotes neo-vascularization
  • Promotes tumor invasion
  • Promotes metastasis
Matrix metalloproteinases[102][103][104]
  • Proteases that degrade tissues, matrix and other proteins and play a role in
    • Bone modeling and remodeling
    • Mammary development
    • Blood vessels remodeling
    • A variety of other tissues such as tracheal tube
  • Promotes inflammation through enzymatic activation
  • Over-expressed in ovarian epithelial cancer
  • Promotes tumor invasion through degradation of extra-cellular matrix
  • Promotes metastasis through degradation of extra-cellular matrix
  • May have a role in tumor initiation and angiogenesis
αvβ3[105][106][107]
  • One of the most important mediator of angiogenesis
  • Promotes smooth muscle cells migration and proliferation
  • Promotes angiogenesis
  • Promotes survival
Focal adhesion kinase (FAK)[108][109][110]
  • Promotes endothelial cells migration
  • May play a role in integrin-dependent cell survival signal
  • Inhibits apoptosis
  • Enhances cell motility
  • Promotes angiogenesis
  • Promotes tumor cells survival
  • Inhibits apoptosis
  • Promotes tumor metastasis
E-cadherin[111][112][113]
  • One of the most important promoter of cell-cell adhesion
  • Play critical role in formation and maintenance of epithelia, and tissue formation
  • Loss or mutations results in:
    • Epithelial–mesenchymal transition
    • Decreased cell-cell adhesion
    • Tumor cells invasion
    • Metastasis

References

  1. 1.0 1.1 1.2 1.3 Lynch HT, Casey MJ, Snyder CL, Bewtra C, Lynch JF, Butts M, Godwin AK (April 2009). "Hereditary ovarian carcinoma: heterogeneity, molecular genetics, pathology, and management". Mol Oncol. 3 (2): 97–137. doi:10.1016/j.molonc.2009.02.004. PMC 2778287. PMID 19383374.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Roy R, Chun J, Powell SN (December 2011). "BRCA1 and BRCA2: different roles in a common pathway of genome protection". Nat. Rev. Cancer. 12 (1): 68–78. doi:10.1038/nrc3181. PMC 4972490. PMID 22193408.
  3. Fan S, Wang J, Yuan R, Ma Y, Meng Q, Erdos MR, Pestell RG, Yuan F, Auborn KJ, Goldberg ID, Rosen EM (May 1999). "BRCA1 inhibition of estrogen receptor signaling in transfected cells". Science. 284 (5418): 1354–6. PMID 10334989.
  4. Hamada J, Nakata D, Nakae D, Kobayashi Y, Akai H, Konishi Y, Okada F, Shibata T, Hosokawa M, Moriuchi T (February 2001). "Increased oxidative DNA damage in mammary tumor cells by continuous epidermal growth factor stimulation". J. Natl. Cancer Inst. 93 (3): 214–9. PMID 11158190.
  5. 5.0 5.1 Toss A, Tomasello C, Razzaboni E, Contu G, Grandi G, Cagnacci A, Schilder RJ, Cortesi L (2015). "Hereditary ovarian cancer: not only BRCA 1 and 2 genes". Biomed Res Int. 2015: 341723. doi:10.1155/2015/341723. PMC 4449870. PMID 26075229.
  6. 6.0 6.1 Martín-López JV, Fishel R (June 2013). "The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome". Fam. Cancer. 12 (2): 159–68. doi:10.1007/s10689-013-9635-x. PMC 4235668. PMID 23572416.
  7. Hsieh P, Yamane K (2008). "DNA mismatch repair: molecular mechanism, cancer, and ageing". Mech. Ageing Dev. 129 (7–8): 391–407. doi:10.1016/j.mad.2008.02.012. PMC 2574955. PMID 18406444.
  8. 8.0 8.1 8.2 Sehgal R, Sheahan K, O'Connell PR, Hanly AM, Martin ST, Winter DC (June 2014). "Lynch syndrome: an updated review". Genes (Basel). 5 (3): 497–507. doi:10.3390/genes5030497. PMC 4198913. PMID 24978665.
  9. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Clendenning M, Sotamaa K, Prior T, Westman JA, Panescu J, Fix D, Lockman J, LaJeunesse J, Comeras I, de la Chapelle A (December 2008). "Feasibility of screening for Lynch syndrome among patients with colorectal cancer". J. Clin. Oncol. 26 (35): 5783–8. doi:10.1200/JCO.2008.17.5950. PMC 2645108. PMID 18809606.
  10. 10.0 10.1 10.2 Toss A, Tomasello C, Razzaboni E, Contu G, Grandi G, Cagnacci A, Schilder RJ, Cortesi L (2015). "Hereditary ovarian cancer: not only BRCA 1 and 2 genes". Biomed Res Int. 2015: 341723. doi:10.1155/2015/341723. PMC 4449870. PMID 26075229.
  11. 11.0 11.1 Miller M, Shirole N, Tian R, Pal D, Sordella R (2016). "The Evolution of TP53 Mutations: From Loss-of-Function to Separation-of-Function Mutants". J Cancer Biol Res. 4 (4). PMC 5298884. PMID 28191499.
  12. 12.0 12.1 12.2 Toss A, Tomasello C, Razzaboni E, Contu G, Grandi G, Cagnacci A, Schilder RJ, Cortesi L (2015). "Hereditary ovarian cancer: not only BRCA 1 and 2 genes". Biomed Res Int. 2015: 341723. doi:10.1155/2015/341723. PMC 4449870. PMID 26075229.
  13. Tabori U, Baskin B, Shago M, Alon N, Taylor MD, Ray PN, Bouffet E, Malkin D, Hawkins C (March 2010). "Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations". J. Clin. Oncol. 28 (8): 1345–50. doi:10.1200/JCO.2009.23.5952. PMID 20142599.
  14. Levine AJ, Momand J, Finlay CA (June 1991). "The p53 tumour suppressor gene". Nature. 351 (6326): 453–6. doi:10.1038/351453a0. PMID 2046748.
  15. Shulman LP, Dungan JS (2010). "Cancer genetics: risks and mechanisms of cancer in women with inherited susceptibility to epithelial ovarian cancer". Cancer Treat. Res. 156: 69–85. doi:10.1007/978-1-4419-6518-9_6. PMC 3086477. PMID 20811826.
  16. Lachlan KL, Lucassen AM, Bunyan D, Temple IK (September 2007). "Cowden syndrome and Bannayan Riley Ruvalcaba syndrome represent one condition with variable expression and age-related penetrance: results of a clinical study of PTEN mutation carriers". J. Med. Genet. 44 (9): 579–85. doi:10.1136/jmg.2007.049981. PMC 2597943. PMID 17526800.
  17. Kalin A, Merideth MA, Regier DS, Blumenthal GM, Dennis PA, Stratton P (February 2013). "Management of reproductive health in Cowden syndrome complicated by endometrial polyps and breast cancer". Obstet Gynecol. 121 (2 Pt 2 Suppl 1): 461–4. doi:http://10 1097/AOG.0b013e318270444f Check |doi= value (help). PMC 3799979. PMID 23344409.
  18. Thorslund T, McIlwraith MJ, Compton SA, Lekomtsev S, Petronczki M, Griffith JD, West SC (October 2010). "The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA". Nat. Struct. Mol. Biol. 17 (10): 1263–5. doi:10.1038/nsmb.1905. PMC 4041013. PMID 20729858.
  19. Carreira A, Hilario J, Amitani I, Baskin RJ, Shivji MK, Venkitaraman AR, Kowalczykowski SC (March 2009). "The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51". Cell. 136 (6): 1032–43. doi:10.1016/j.cell.2009.02.019. PMC 2669112. PMID 19303847.
  20. Loveday C, Turnbull C, Ramsay E, Hughes D, Ruark E, Frankum JR, Bowden G, Kalmyrzaev B, Warren-Perry M, Snape K, Adlard JW, Barwell J, Berg J, Brady AF, Brewer C, Brice G, Chapman C, Cook J, Davidson R, Donaldson A, Douglas F, Greenhalgh L, Henderson A, Izatt L, Kumar A, Lalloo F, Miedzybrodzka Z, Morrison PJ, Paterson J, Porteous M, Rogers MT, Shanley S, Walker L, Eccles D, Evans DG, Renwick A, Seal S, Lord CJ, Ashworth A, Reis-Filho JS, Antoniou AC, Rahman N (August 2011). "Germline mutations in RAD51D confer susceptibility to ovarian cancer". Nat. Genet. 43 (9): 879–882. doi:10.1038/ng.893. PMC 4845885. PMID 21822267.
  21. Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, Freund M, Lichtner P, Hartmann L, Schaal H, Ramser J, Honisch E, Kubisch C, Wichmann HE, Kast K, Deissler H, Engel C, Müller-Myhsok B, Neveling K, Kiechle M, Mathew CG, Schindler D, Schmutzler RK, Hanenberg H (May 2010). "Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene". Nat. Genet. 42 (5): 410–4. doi:10.1038/ng.569. PMID 20400964.
  22. Sy SM, Huen MS, Chen J (April 2009). "PALB2 is an integral component of the BRCA complex required for homologous recombination repair". Proc. Natl. Acad. Sci. U.S.A. 106 (17): 7155–60. doi:10.1073/pnas.0811159106. PMC 2678481. PMID 19369211.
  23. Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N, Liu X, Jasin M, Couch FJ, Livingston DM (June 2006). "Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2". Mol. Cell. 22 (6): 719–29. doi:10.1016/j.molcel.2006.05.022. PMID 16793542.
  24. Casadei S, Norquist BM, Walsh T, Stray S, Mandell JB, Lee MK, Stamatoyannopoulos JA, King MC (March 2011). "Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer". Cancer Res. 71 (6): 2222–9. doi:10.1158/0008-5472.CAN-10-3958. PMC 3059378. PMID 21285249.
  25. Poumpouridou N, Kroupis C (December 2011). "Hereditary breast cancer: beyond BRCA genetic analysis; PALB2 emerges". Clin. Chem. Lab. Med. 50 (3): 423–34. doi:10.1515/cclm-2011-0840. PMID 22505525.
  26. 26.0 26.1 Wee P, Wang Z (May 2017). "Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways". Cancers (Basel). 9 (5). doi:10.3390/cancers9050052. PMC 5447962. PMID 28513565.
  27. 27.0 27.1 Iqbal N, Iqbal N (2014). "Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications". Mol Biol Int. 2014: 852748. doi:10.1155/2014/852748. PMC 4170925. PMID 25276427.
  28. Zan L, Wu H, Jiang J, Zhao S, Song Y, Teng G, Li H, Jia Y, Zhou M, Zhang X, Qi J, Wang J (July 2011). "Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: correlations with angiogenesis and cerebral edema". Neurochem. Int. 58 (8): 872–9. doi:10.1016/j.neuint.2011.02.014. PMC 3100427. PMID 21334414.
  29. Reinecke JB, Katafiasz D, Naslavsky N, Caplan S (April 2014). "Regulation of Src trafficking and activation by the endocytic regulatory proteins MICAL-L1 and EHD1". J. Cell. Sci. 127 (Pt 8): 1684–98. doi:10.1242/jcs.133892. PMC 3986674. PMID 24481818.
  30. Saad AF, Hu W, Sood AK (December 2010). "Microenvironment and pathogenesis of epithelial ovarian cancer". Horm Cancer. 1 (6): 277–90. doi:10.1007/s12672-010-0054-2. PMC 3199131. PMID 21761359.
  31. Dwyer AR, Greenland EL, Pixley FJ (June 2017). "Promotion of Tumor Invasion by Tumor-Associated Macrophages: The Role of CSF-1-Activated Phosphatidylinositol 3 Kinase and Src Family Kinase Motility Signaling". Cancers (Basel). 9 (6). doi:10.3390/cancers9060068. PMC 5483887. PMID 28629162.
  32. Abraham D, Zins K, Sioud M, Lucas T, Schäfer R, Stanley ER, Aharinejad S (March 2010). "Stromal cell-derived CSF-1 blockade prolongs xenograft survival of CSF-1-negative neuroblastoma". Int. J. Cancer. 126 (6): 1339–52. doi:10.1002/ijc.24859. PMC 3222589. PMID 19711348.
  33. Laron Z (October 2001). "Insulin-like growth factor 1 (IGF-1): a growth hormone". MP, Mol. Pathol. 54 (5): 311–6. PMC 1187088. PMID 11577173.
  34. Weroha SJ, Haluska P (June 2012). "The insulin-like growth factor system in cancer". Endocrinol. Metab. Clin. North Am. 41 (2): 335–50, vi. doi:10.1016/j.ecl.2012.04.014. PMC 3614012. PMID 22682634.
  35. Lukanova A, Lundin E, Toniolo P, Micheli A, Akhmedkhanov A, Rinaldi S, Muti P, Lenner P, Biessy C, Krogh V, Zeleniuch-Jacquotte A, Berrino F, Hallmans G, Riboli E, Kaaks R (October 2002). "Circulating levels of insulin-like growth factor-I and risk of ovarian cancer". Int. J. Cancer. 101 (6): 549–54. doi:10.1002/ijc.10613. PMID 12237896.
  36. Prior IA, Lewis PD, Mattos C (May 2012). "A comprehensive survey of Ras mutations in cancer". Cancer Res. 72 (10): 2457–67. doi:10.1158/0008-5472.CAN-11-2612. PMC 3354961. PMID 22589270.
  37. Franklin WA, Haney J, Sugita M, Bemis L, Jimeno A, Messersmith WA (January 2010). "KRAS mutation: comparison of testing methods and tissue sampling techniques in colon cancer". J Mol Diagn. 12 (1): 43–50. doi:10.2353/jmoldx.2010.080131. PMC 2797717. PMID 20007845.
  38. Estep AL, Palmer C, McCormick F, Rauen KA (December 2007). "Mutation analysis of BRAF, MEK1 and MEK2 in 15 ovarian cancer cell lines: implications for therapy". PLoS ONE. 2 (12): e1279. doi:10.1371/journal.pone.0001279. PMC 2093994. PMID 18060073.
  39. Grisham RN, Iyer G, Garg K, Delair D, Hyman DM, Zhou Q, Iasonos A, Berger MF, Dao F, Spriggs DR, Levine DA, Aghajanian C, Solit DB (February 2013). "BRAF mutation is associated with early stage disease and improved outcome in patients with low-grade serous ovarian cancer". Cancer. 119 (3): 548–554. doi:10.1002/cncr.27782. PMC 3961140. PMID 22930283.
  40. Alsina-Sanchís E, Figueras A, Lahiguera A, Gil-Martín M, Pardo B, Piulats JM, Martí L, Ponce J, Matias-Guiu X, Vidal A, Villanueva A, Viñals F (July 2017). "TGFβ Controls Ovarian Cancer Cell Proliferation". Int J Mol Sci. 18 (8). doi:10.3390/ijms18081658. PMC 5578048. PMID 28758950.
  41. Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, Pasche B, Lee C, Grippo PJ (February 2014). "TGF-β: duality of function between tumor prevention and carcinogenesis". J. Natl. Cancer Inst. 106 (2): djt369. doi:10.1093/jnci/djt369. PMC 3952197. PMID 24511106.
  42. Bierie B, Moses HL (February 2010). "Transforming growth factor beta (TGF-beta) and inflammation in cancer". Cytokine Growth Factor Rev. 21 (1): 49–59. doi:10.1016/j.cytogfr.2009.11.008. PMC 2834863. PMID 20018551.
  43. Miller DM, Thomas SD, Islam A, Muench D, Sedoris K (October 2012). "c-Myc and cancer metabolism". Clin. Cancer Res. 18 (20): 5546–53. doi:10.1158/1078-0432.CCR-12-0977. PMC 3505847. PMID 23071356.
  44. Dang CV (March 2012). "MYC on the path to cancer". Cell. 149 (1): 22–35. doi:10.1016/j.cell.2012.03.003. PMC 3345192. PMID 22464321.
  45. Aughey GN, Grice SJ, Liu JL (February 2016). "The Interplay between Myc and CTP Synthase in Drosophila". PLoS Genet. 12 (2): e1005867. doi:10.1371/journal.pgen.1005867. PMC 4759343. PMID 26889675.
  46. Neumeister P, Pixley FJ, Xiong Y, Xie H, Wu K, Ashton A, Cammer M, Chan A, Symons M, Stanley ER, Pestell RG (May 2003). "Cyclin D1 governs adhesion and motility of macrophages". Mol. Biol. Cell. 14 (5): 2005–15. doi:10.1091/mbc.02-07-0102. PMC 165093. PMID 12802071.
  47. Dong P, Zhang C, Parker BT, You L, Mathey-Prevot B (2018). "Cyclin D/CDK4/6 activity controls G1 length in mammalian cells". PLoS ONE. 13 (1): e0185637. doi:10.1371/journal.pone.0185637. PMC 5757913. PMID 29309421.
  48. Khleif SN, DeGregori J, Yee CL, Otterson GA, Kaye FJ, Nevins JR, Howley PM (April 1996). "Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity". Proc. Natl. Acad. Sci. U.S.A. 93 (9): 4350–4. PMC 39540. PMID 8633069.
  49. Honda R, Lowe ED, Dubinina E, Skamnaki V, Cook A, Brown NR, Johnson LN (February 2005). "The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2-independent roles". EMBO J. 24 (3): 452–63. doi:10.1038/sj.emboj.7600554. PMC 548659. PMID 15660127.
  50. Choudhary GS, Tat TT, Misra S, Hill BT, Smith MR, Almasan A, Mazumder S (July 2015). "Cyclin E/Cdk2-dependent phosphorylation of Mcl-1 determines its stability and cellular sensitivity to BH3 mimetics". Oncotarget. 6 (19): 16912–25. doi:10.18632/oncotarget.4857. PMC 4627281. PMID 26219338.
  51. Won KA, Reed SI (August 1996). "Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E". EMBO J. 15 (16): 4182–93. PMC 452142. PMID 8861947.
  52. Sun X, Zhangyuan G, Shi L, Wang Y, Sun B, Ding Q (May 2017). "Prognostic and clinicopathological significance of cyclin B expression in patients with breast cancer: A meta-analysis". Medicine (Baltimore). 96 (19): e6860. doi:10.1097/MD.0000000000006860. PMC 5428614. PMID 28489780.
  53. Huang Y, Sramkoski RM, Jacobberger JW (2013). "The kinetics of G2 and M transitions regulated by B cyclins". PLoS ONE. 8 (12): e80861. doi:10.1371/journal.pone.0080861. PMC 3851588. PMID 24324638.
  54. Lindqvist A, van Zon W, Karlsson Rosenthal C, Wolthuis RM (May 2007). "Cyclin B1-Cdk1 activation continues after centrosome separation to control mitotic progression". PLoS Biol. 5 (5): e123. doi:10.1371/journal.pbio.0050123. PMC 1858714. PMID 17472438.
  55. Yoon N, Yoon G, Park CK, Kim HS (October 2016). "Stromal p16 expression is significantly increased in malignant ovarian neoplasms". Oncotarget. 7 (40): 64665–64673. doi:10.18632/oncotarget.11660. PMC 5323106. PMID 27572321.
  56. Sano T, Oyama T, Kashiwabara K, Fukuda T, Nakajima T (December 1998). "Expression status of p16 protein is associated with human papillomavirus oncogenic potential in cervical and genital lesions". Am. J. Pathol. 153 (6): 1741–8. doi:10.1016/S0002-9440(10)65689-1. PMC 1866324. PMID 9846965.
  57. Felix AS, Sherman ME, Hewitt SM, Gunja MZ, Yang HP, Cora RL, Boudreau V, Ylaya K, Lissowska J, Brinton LA, Wentzensen N (2015). "Cell-cycle protein expression in a population-based study of ovarian and endometrial cancers". Front Oncol. 5: 25. doi:10.3389/fonc.2015.00025. PMC 4321403. PMID 25709969.
  58. Lee J, Kim SS (November 2009). "The function of p27 KIP1 during tumor development". Exp. Mol. Med. 41 (11): 765–71. doi:10.3858/emm.2009.41.11.102. PMC 2788730. PMID 19887899.
  59. Roy S, Singh RP, Agarwal C, Siriwardana S, Sclafani R, Agarwal R (June 2008). "Downregulation of both p21/Cip1 and p27/Kip1 produces a more aggressive prostate cancer phenotype". Cell Cycle. 7 (12): 1828–35. doi:10.4161/cc.7.12.6024. PMC 2744498. PMID 18583941.
  60. Miskimins WK, Wang G, Hawkinson M, Miskimins R (August 2001). "Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation". Mol. Cell. Biol. 21 (15): 4960–7. doi:10.1128/MCB.21.15.4960-4967.2001. PMC 87223. PMID 11438653.
  61. Abbas T, Dutta A (June 2009). "p21 in cancer: intricate networks and multiple activities". Nat. Rev. Cancer. 9 (6): 400–14. doi:10.1038/nrc2657. PMC 2722839. PMID 19440234.
  62. Dash BC, El-Deiry WS (April 2005). "Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity". Mol. Cell. Biol. 25 (8): 3364–87. doi:10.1128/MCB.25.8.3364-3387.2005. PMC 1069593. PMID 15798220.
  63. Shi Y, Zou M, Farid NR, al-Sedairy ST (November 1996). "Evidence of gene deletion of p21 (WAF1/CIP1), a cyclin-dependent protein kinase inhibitor, in thyroid carcinomas". Br. J. Cancer. 74 (9): 1336–41. PMC 2074763. PMID 8912526.
  64. Lawrence T (December 2009). "The nuclear factor NF-kappaB pathway in inflammation". Cold Spring Harb Perspect Biol. 1 (6): a001651. doi:10.1101/cshperspect.a001651. PMC 2882124. PMID 20457564.
  65. Yang G, Xiao X, Rosen DG, Cheng X, Wu X, Chang B, Liu G, Xue F, Mercado-Uribe I, Chiao P, Du X, Liu J (April 2011). "The biphasic role of NF-kappaB in progression and chemoresistance of ovarian cancer". Clin. Cancer Res. 17 (8): 2181–94. doi:10.1158/1078-0432.CCR-10-3265. PMC 3152795. PMID 21339307.
  66. Charbonneau B, Block MS, Bamlet WR, Vierkant RA, Kalli KR, Fogarty Z, Rider DN, Sellers TA, Tworoger SS, Poole E, Risch HA, Salvesen HB, Kiemeney LA, Baglietto L, Giles GG, Severi G, Trabert B, Wentzensen N, Chenevix-Trench G, Whittemore AS, Sieh W, Chang-Claude J, Bandera EV, Orlow I, Terry K, Goodman MT, Thompson PJ, Cook LS, Rossing MA, Ness RB, Narod SA, Kupryjanczyk J, Lu K, Butzow R, Dörk T, Pejovic T, Campbell I, Le ND, Bunker CH, Bogdanova N, Runnebaum IB, Eccles D, Paul J, Wu AH, Gayther SA, Hogdall E, Heitz F, Kaye SB, Karlan BY, Anton-Culver H, Gronwald J, Hogdall CK, Lambrechts D, Fasching PA, Menon U, Schildkraut J, Pearce CL, Levine DA, Kjaer SK, Cramer D, Flanagan JM, Phelan CM, Brown R, Massuger LF, Song H, Doherty JA, Krakstad C, Liang D, Odunsi K, Berchuck A, Jensen A, Lubinski J, Nevanlinna H, Bean YT, Lurie G, Ziogas A, Walsh C, Despierre E, Brinton L, Hein A, Rudolph A, Dansonka-Mieszkowska A, Olson SH, Harter P, Tyrer J, Vitonis AF, Brooks-Wilson A, Aben KK, Pike MC, Ramus SJ, Wik E, Cybulski C, Lin J, Sucheston L, Edwards R, McGuire V, Lester J, du Bois A, Lundvall L, Wang-Gohrke S, Szafron LM, Lambrechts S, Yang H, Beckmann MW, Pelttari LM, Van Altena AM, van den Berg D, Halle MK, Gentry-Maharaj A, Schwaab I, Chandran U, Menkiszak J, Ekici AB, Wilkens LR, Leminen A, Modugno F, Friel G, Rothstein JH, Vergote I, Garcia-Closas M, Hildebrandt MA, Sobiczewski P, Kelemen LE, Pharoah PD, Moysich K, Knutson KL, Cunningham JM, Fridley BL, Goode EL (February 2014). "Risk of ovarian cancer and the NF-κB pathway: genetic association with IL1A and TNFSF10". Cancer Res. 74 (3): 852–61. doi:10.1158/0008-5472.CAN-13-1051. PMC 3946482. PMID 24272484.
  67. Badgwell DB, Lu Z, Le K, Gao F, Yang M, Suh GK, Bao JJ, Das P, Andreeff M, Chen W, Yu Y, Ahmed AA, S-L Liao W, Bast RC (January 2012). "The tumor-suppressor gene ARHI (DIRAS3) suppresses ovarian cancer cell migration through inhibition of the Stat3 and FAK/Rho signaling pathways". Oncogene. 31 (1): 68–79. doi:10.1038/onc.2011.213. PMC 3170676. PMID 21643014.
  68. Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y, Cuevas B, Kuo WL, Gray JW, Siciliano M, Mills GB, Bast RC (January 1999). "NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas". Proc. Natl. Acad. Sci. U.S.A. 96 (1): 214–9. PMC 15119. PMID 9874798.
  69. Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG (October 1995). "Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions". J. Biol. Chem. 270 (40): 23589–97. PMID 7559524.
  70. Dobbin ZC, Landen CN (April 2013). "The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer". Int J Mol Sci. 14 (4): 8213–27. doi:10.3390/ijms14048213. PMC 3645739. PMID 23591839.
  71. Hemmings BA, Restuccia DF (September 2012). "PI3K-PKB/Akt pathway". Cold Spring Harb Perspect Biol. 4 (9): a011189. doi:10.1101/cshperspect.a011189. PMC 3428770. PMID 22952397.
  72. Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, Olaru OT, Grădinaru D, Tsatsakis A, Tsoukalas D, Spandidos DA, Margina D (December 2018). "The Akt pathway in oncology therapy and beyond (Review)". Int. J. Oncol. 53 (6): 2319–2331. doi:10.3892/ijo.2018.4597. PMC 6203150. PMID 30334567.
  73. Shi Y, Paluch BE, Wang X, Jiang X (October 2012). "PTEN at a glance". J. Cell. Sci. 125 (Pt 20): 4687–92. doi:10.1242/jcs.093765. PMC 3517091. PMID 23223894.
  74. Tanwar PS, Mohapatra G, Chiang S, Engler DA, Zhang L, Kaneko-Tarui T, Ohguchi Y, Birrer MJ, Teixeira JM (March 2014). "Loss of LKB1 and PTEN tumor suppressor genes in the ovarian surface epithelium induces papillary serous ovarian cancer". Carcinogenesis. 35 (3): 546–53. doi:10.1093/carcin/bgt357. PMC 3941742. PMID 24170201.
  75. Hopkins BD, Parsons RE (November 2014). "Molecular pathways: intercellular PTEN and the potential of PTEN restoration therapy". Clin. Cancer Res. 20 (21): 5379–83. doi:10.1158/1078-0432.CCR-13-2661. PMC 4362520. PMID 25361917.
  76. Zilfou JT, Lowe SW (November 2009). "Tumor suppressive functions of p53". Cold Spring Harb Perspect Biol. 1 (5): a001883. doi:10.1101/cshperspect.a001883. PMC 2773645. PMID 20066118.
  77. Ozaki T, Nakagawara A (March 2011). "Role of p53 in Cell Death and Human Cancers". Cancers (Basel). 3 (1): 994–1013. doi:10.3390/cancers3010994. PMC 3756401. PMID 24212651.
  78. Zhang Y, Cao L, Nguyen D, Lu H (December 2016). "TP53 mutations in epithelial ovarian cancer". Transl Cancer Res. 5 (6): 650–663. doi:10.21037/tcr.2016.08.40. PMC 6320227. PMID 30613473.
  79. 79.0 79.1 Neff RT, Senter L, Salani R (August 2017). "BRCA mutation in ovarian cancer: testing, implications and treatment considerations". Ther Adv Med Oncol. 9 (8): 519–531. doi:10.1177/1758834017714993. PMC 5524247. PMID 28794804.
  80. 80.0 80.1 Chen S, Iversen ES, Friebel T, Finkelstein D, Weber BL, Eisen A, Peterson LE, Schildkraut JM, Isaacs C, Peshkin BN, Corio C, Leondaridis L, Tomlinson G, Dutson D, Kerber R, Amos CI, Strong LC, Berry DA, Euhus DM, Parmigiani G (February 2006). "Characterization of BRCA1 and BRCA2 mutations in a large United States sample". J. Clin. Oncol. 24 (6): 863–71. doi:10.1200/JCO.2005.03.6772. PMC 2323978. PMID 16484695.
  81. Vymetalkova VP, Slyskova J, Korenkova V, Bielik L, Langerova L, Prochazka P, Rejhova A, Schwarzova L, Pardini B, Naccarati A, Vodicka P (January 2014). "Molecular characteristics of mismatch repair genes in sporadic colorectal tumors in Czech patients". BMC Med. Genet. 15: 17. doi:10.1186/1471-2350-15-17. PMC 3913626. PMID 24484585.
  82. Murphy MA, Wentzensen N (October 2011). "Frequency of mismatch repair deficiency in ovarian cancer: a systematic review This article is a US Government work and, as such, is in the public domain of the United States of America". Int. J. Cancer. 129 (8): 1914–22. doi:10.1002/ijc.25835. PMC 3107885. PMID 21140452.
  83. Heinen CD (February 2016). "Mismatch repair defects and Lynch syndrome: The role of the basic scientist in the battle against cancer". DNA Repair (Amst.). 38: 127–34. doi:10.1016/j.dnarep.2015.11.025. PMC 4740212. PMID 26710976.
  84. Peter ME, Hadji A, Murmann AE, Brockway S, Putzbach W, Pattanayak A, Ceppi P (April 2015). "The role of CD95 and CD95 ligand in cancer". Cell Death Differ. 22 (4): 549–59. doi:10.1038/cdd.2015.3. PMC 4356349. PMID 25656654.
  85. Fraser M, Leung B, Jahani-Asl A, Yan X, Thompson WE, Tsang BK (October 2003). "Chemoresistance in human ovarian cancer: the role of apoptotic regulators". Reprod. Biol. Endocrinol. 1: 66. doi:10.1186/1477-7827-1-66. PMC 270001. PMID 14609433.
  86. Lowin B, Hahne M, Mattmann C, Tschopp J (August 1994). "Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways". Nature. 370 (6491): 650–2. doi:10.1038/370650a0. PMID 7520535.
  87. Morandi F, Rizzo R, Fainardi E, Rouas-Freiss N, Pistoia V (2016). "Recent Advances in Our Understanding of HLA-G Biology: Lessons from a Wide Spectrum of Human Diseases". J Immunol Res. 2016: 4326495. doi:10.1155/2016/4326495. PMC 5019910. PMID 27652273.
  88. Lin A, Yan WH (November 2015). "Human Leukocyte Antigen-G (HLA-G) Expression in Cancers: Roles in Immune Evasion, Metastasis and Target for Therapy". Mol. Med. 21 (1): 782–791. doi:10.2119/molmed.2015.00083. PMC 4749493. PMID 26322846.
  89. Sheu JJ, Shih I (December 2007). "Clinical and biological significance of HLA-G expression in ovarian cancer". Semin. Cancer Biol. 17 (6): 436–43. doi:10.1016/j.semcancer.2007.06.012. PMC 2151836. PMID 17681474. Vancouver style error: initials (help)
  90. Lee YK, Chung HH, Kim JW, Song YS, Park NH (2015). "Expression of phosphorylated Akt and hTERT is associated with prognosis of epithelial ovarian carcinoma". Int J Clin Exp Pathol. 8 (11): 14971–6. PMC 4713616. PMID 26823830.
  91. Ramlee MK, Wang J, Toh WX, Li S (August 2016). "Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene". Genes (Basel). 7 (8). doi:10.3390/genes7080050. PMC 4999838. PMID 27548225.
  92. Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U, Castelo-Branco P (March 2018). "Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer". J. Biomed. Sci. 25 (1): 22. doi:10.1186/s12929-018-0422-8. PMC 5846307. PMID 29526163.
  93. Masoumi Moghaddam S, Amini A, Morris DL, Pourgholami MH (June 2012). "Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer". Cancer Metastasis Rev. 31 (1–2): 143–62. doi:10.1007/s10555-011-9337-5. PMC 3350632. PMID 22101807.
  94. Goel HL, Mercurio AM (December 2013). "VEGF targets the tumour cell". Nat. Rev. Cancer. 13 (12): 871–82. doi:10.1038/nrc3627. PMC 4011842. PMID 24263190.
  95. Ohta Y, Shridhar V, Bright RK, Kalemkerian GP, Du W, Carbone M, Watanabe Y, Pass HI (September 1999). "VEGF and VEGF type C play an important role in angiogenesis and lymphangiogenesis in human malignant mesothelioma tumours". Br. J. Cancer. 81 (1): 54–61. doi:10.1038/sj.bjc.6690650. PMC 2374345. PMID 10487612.
  96. David JM, Dominguez C, Hamilton DH, Palena C (June 2016). "The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance". Vaccines (Basel). 4 (3). doi:10.3390/vaccines4030022. PMC 5041016. PMID 27348007.
  97. Yung MM, Tang HW, Cai PC, Leung TH, Ngu SF, Chan KK, Xu D, Yang H, Ngan HY, Chan DW (2018). "GRO-α and IL-8 enhance ovarian cancer metastatic potential via the CXCR2-mediated TAK1/NFκB signaling cascade". Theranostics. 8 (5): 1270–1285. doi:10.7150/thno.22536. PMC 5835935. PMID 29507619.
  98. Escudero-Lourdes C, Wu T, Camarillo JM, Gandolfi AJ (January 2012). "Interleukin-8 (IL-8) over-production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]-induced malignant transformation of urothelial cells". Toxicol. Appl. Pharmacol. 258 (1): 10–8. doi:10.1016/j.taap.2011.10.002. PMC 3254786. PMID 22015448.
  99. Park JE, Son AI, Zhou R (July 2013). "Roles of EphA2 in Development and Disease". Genes (Basel). 4 (3): 334–57. doi:10.3390/genes4030334. PMC 3924825. PMID 24705208.
  100. Dunne PD, Dasgupta S, Blayney JK, McArt DG, Redmond KL, Weir JA, Bradley CA, Sasazuki T, Shirasawa S, Wang T, Srivastava S, Ong CW, Arthur K, Salto-Tellez M, Wilson RH, Johnston PG, Van Schaeybroeck S (January 2016). "EphA2 Expression Is a Key Driver of Migration and Invasion and a Poor Prognostic Marker in Colorectal Cancer". Clin. Cancer Res. 22 (1): 230–242. doi:10.1158/1078-0432.CCR-15-0603. PMC 4694030. PMID 26283684.
  101. Lu C, Shahzad MM, Wang H, Landen CN, Kim SW, Allen J, Nick AM, Jennings N, Kinch MS, Bar-Eli M, Sood AK (July 2008). "EphA2 overexpression promotes ovarian cancer growth". Cancer Biol. Ther. 7 (7): 1098–103. PMC 2705979. PMID 18443431.
  102. Page-McCaw A, Ewald AJ, Werb Z (March 2007). "Matrix metalloproteinases and the regulation of tissue remodelling". Nat. Rev. Mol. Cell Biol. 8 (3): 221–33. doi:10.1038/nrm2125. PMC 2760082. PMID 17318226.
  103. Caley MP, Martins VL, O'Toole EA (April 2015). "Metalloproteinases and Wound Healing". Adv Wound Care (New Rochelle). 4 (4): 225–234. doi:10.1089/wound.2014.0581. PMC 4397992. PMID 25945285.
  104. Al-Alem L, Curry TE (August 2015). "Ovarian cancer: involvement of the matrix metalloproteinases". Reproduction. 150 (2): R55–64. doi:10.1530/REP-14-0546. PMC 4955511. PMID 25918438.
  105. Cai WJ, Li MB, Wu X, Wu S, Zhu W, Chen D, Luo M, Eitenmüller I, Kampmann A, Schaper J, Schaper W (February 2009). "Activation of the integrins alpha 5beta 1 and alpha v beta 3 and focal adhesion kinase (FAK) during arteriogenesis". Mol. Cell. Biochem. 322 (1–2): 161–9. doi:10.1007/s11010-008-9953-8. PMC 2758386. PMID 18998200.
  106. Liu Z, Wang F, Chen X (2008). "Integrin alpha(v)beta(3)-Targeted Cancer Therapy". Drug Dev. Res. 69 (6): 329–339. doi:10.1002/ddr.20265. PMC 2901818. PMID 20628538.
  107. Shaw SK, Schreiber CL, Roland FM, Battles PM, Brennan SP, Padanilam SJ, Smith BD (May 2018). "High expression of integrin αvβ3 enables uptake of targeted fluorescent probes into ovarian cancer cells and tumors". Bioorg. Med. Chem. 26 (8): 2085–2091. doi:10.1016/j.bmc.2018.03.007. PMC 5963687. PMID 29548784.
  108. Shen Y, Schaller MD (August 1999). "Focal adhesion targeting: the critical determinant of FAK regulation and substrate phosphorylation". Mol. Biol. Cell. 10 (8): 2507–18. doi:10.1091/mbc.10.8.2507. PMC 25482. PMID 10436008.
  109. Zhao X, Guan JL (July 2011). "Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis". Adv. Drug Deliv. Rev. 63 (8): 610–5. doi:10.1016/j.addr.2010.11.001. PMC 3132829. PMID 21118706.
  110. Li M, Hong LI, Liao M, Guo G (August 2015). "Expression and clinical significance of focal adhesion kinase and adrenomedullin in epithelial ovarian cancer". Oncol Lett. 10 (2): 1003–1007. doi:10.3892/ol.2015.3278. PMC 4508992. PMID 26622614.
  111. Dong LL, Liu L, Ma CH, Li JS, Du C, Xu S, Han LH, Li L, Wang XW (June 2012). "E-cadherin promotes proliferation of human ovarian cancer cells in vitro via activating MEK/ERK pathway". Acta Pharmacol. Sin. 33 (6): 817–22. doi:10.1038/aps.2012.30. PMC 4010376. PMID 22543706.
  112. Pećina-Slaus N (October 2003). "Tumor suppressor gene E-cadherin and its role in normal and malignant cells". Cancer Cell Int. 3 (1): 17. doi:10.1186/1475-2867-3-17. PMC 270068. PMID 14613514.
  113. Petrova YI, Schecterson L, Gumbiner BM (November 2016). "Roles for E-cadherin cell surface regulation in cancer". Mol. Biol. Cell. 27 (21): 3233–3244. doi:10.1091/mbc.E16-01-0058. PMC 5170857. PMID 27582386.