Fission product yield
This article provides insufficient context for those unfamiliar with the subject.Learn how and when to remove this template message) ( |
Mass vs. yield curve
If a graph of the mass or mole yield of fission products against the atomic number of the fragments is drawn then it has two peaks, one in the area zirconium through to palladium and one at xenon through to neodymium. This is because the fission event causes the nucleus to split in an asymmetric manner.[1]
Yield vs. Z - This is a typical distribution for the fission of uranium. Note that in the calculations used to make this graph the activation of fission products was ignored and the fission was assumed to occur in a single moment rather than a length of time. In this bar chart results are shown for different cooling times (time after fission).
Because of the stability of nuclei with even numbers of protons and/or neutrons the curve of yield against element is not a smooth curve. It tends to alternate.
In general, the higher the energy of the state that undergoes nuclear fission, the more likely a symmetric fission is, hence as the neutron energy increases and/or the energy of the fissile atom increases, the valley between the two peaks becomes more shallow; for instance, the curve of yield against mass for Pu-239 has a more shallow valley than that observed for U-235, when the neutrons are thermal neutrons. The curves for the fission of the later actinides tend to make even more shallow valleys. In extreme cases such as 259Fm, only one peak is seen.
Yield is usually expressed relative to number of fissioning nuclei, not the number of fission product nuclei, that is, yields should sum to 200%.
The table in the next section gives yields for notable radioactive (with halflife greater than one year, plus iodine-131) fission products, and (the few most absorptive) neutron poison fission products, from thermal neutron fission of U-235 (typical of nuclear power reactors), computed from [2].
The yields in the table sum to only 45.5522%, including 34.8401% which have halflife greater than one year:
t½ in years | yield |
---|---|
1 to 5 | 2.7252% |
10 to 100 | 12.5340% |
2 to 300,000 | 6.1251% |
1.5 to 16 million | 13.4494% |
The remainder and the unlisted 154.4478% decay with halflife less than one year into nonradioactive nuclei.
This is before accounting for the effects of any subsequent neutron capture, e.g.:
- 135Xe capturing a neutron and becoming nonradioactive 136Xe, rather than decaying to 135Cs which is radioactive with a halflife of 2.3 million years
- Nonradioactive 133Cs capturing a neutron and becoming 134Cs which is radioactive with a halflife of 2 years
- Many of the fission products with mass 147 or greater such as Promethium-147, Samarium-149, Samarium-151, Europium-155 have significant cross sections for neutron capture, so that one heavy fission product atom can undergo multiple successive neutron captures.
Besides fission products, the other types of radioactive products are
- plutonium containing 238Pu, 239Pu, 240Pu, 241Pu, and 242Pu,
- minor actinides including 237Np, 241Am, 243Am, curium isotopes, and perhaps californium
- reprocessed uranium containing 236U and other isotopes
- tritium
- activation products of neutron capture by the reactor or bomb structure or the environment
Ordered by yield (thermal neutron fission of U-235)
Yield | Isotope | Halflife | Comment |
---|---|---|---|
6.7896% | 133Cs → 134Cs | 2.065y | neutron capture (29 barns) slowly converts stable 133Cs to 134Cs, which itself is low-yield because beta decay stops at 134Xe; can be further converted (140 barns) to 135Cs |
6.3333% | 135I → 135Xe | 6.57h | most important neutron poison; neutron capture converts 10%-50% of 135Xe to 136Xe; remainder decays (9.14h) to 135Cs (2.3my) |
6.2956% | 93Zr | 1.53my | |
6.0899% | 137Cs | 30.17y | |
6.0507% | 99Tc | 211ky | Candidate for disposal by nuclear transmutation |
5.7518% | 90Sr | 28.9y | |
2.8336% | 131I | 8.02d | |
2.2713% | 147Pm | 2.62y | |
1.0888% | 149Sm | nonradioactive | 2nd most significant neutron poison |
0.6576% | 129I | 15.7my | Candidate for disposal by nuclear transmutation |
0.4203% | 151Sm | 90y | neutron poison; most will be converted to stable 152Sm |
0.3912% | 106Ru | 373.6d | |
0.2717% | 85Kr | 10.78y | |
0.1629% | 107Pd | 6.5my | |
0.0508% | 79Se | 295ky | |
0.0330% | 155Eu → 155Gd | 4.76y | both neutron poisons, most will be destroyed while fuel still in use |
0.0297% | 125Sb | 2.76y | |
0.0236% | 126Sn | 230ky | |
0.0065% | 157Gd | nonradioactive | neutron poison |
0.0003% | 113mCd | 14.1y | neutron poison, most will be destroyed while fuel still in use |
Ordered by mass number
Ordered by halflife
Yield | Isotope | Halflife | Comment |
---|---|---|---|
2.8336% | 131I | 8.02d | Important in nuclear explosions and accidents but not in cooled spent nuclear fuel |
0.3912% | 106Ru | 373.6d | |
6.7896% | 133Cs → 134Cs | 2.065y | neutron capture converts a few percent of nonradioactive 133Cs to 134Cs, which has low direct yield because beta decay stops at 134Xe |
2.2713% | 147Pm | 2.62y | |
0.0297% | 125Sb | 2.76y | |
<0.0330% | 155Eu → 155Gd | 4.76y | both neutron poisons, most will be destroyed by neutron capture while still in reactor |
0.2717% | 85Kr | 10.78y | Current nuclear reprocessing releases it to atmosphere |
<0.0003% | 113mCd | 14.1y | most will be destroyed by neutron capture while still in reactor |
5.7518% | 90Sr | 28.9y | One of two principal medium-term radiation and heat sources |
6.0899% | 137Cs | 30.17y | One of two principal medium-term radiation and heat sources |
<0.4203% | 151Sm | 90y | Most will be destroyed by neutron capture while still in reactor |
6.0507% | 99Tc | 211ky | Dominant radiation source among FP in period about Template:E to Template:E years; mobile in environment; candidate for disposal by nuclear transmutation |
0.0236% | 126Sn | 230ky | |
0.0508% | 79Se | 295ky | |
6.2956% | 93Zr | 1.53my | |
<6.3333% | 135Cs | 2.3my | |
0.1629% | 107Pd | 6.5my | |
0.6576% | 129I | 15.7my | Mobile in environment; candidate for disposal by nuclear transmutation |
<1.0888% | 149Sm | nonradioactive | neutron poison |
<0.0065% | 157Gd | nonradioactive | neutron poison |
Ordered by thermal neutron neutron absorption cross section
Barns | Yield | Isotope | t½ | Comment |
---|---|---|---|---|
2650000 | 6.3333% | 135I → 135Xe | 6.57h | Most important neutron poison; neutron capture rapidly converts 135Xe to 136Xe; remainder decays (9.14h) to 135Cs (2.3my) |
254000 | 0.0065% | 157Gd | ∞ | neutron poison, but low yield |
40140 | 1.0888% | 149Sm | ∞ | 2nd most important neutron poison |
20600 | 0.0003% | 113mCd | 14.1y | most will be destroyed by neutron capture |
15200 | 0.4203% | 151Sm | 90y | most will be destroyed by neutron capture |
3950 | 0.0330% | 155Eu → 155Gd | 4.76y | both neutron poisons |
96 | 2.2713% | 147Pm | 2.62y | |
80 | 2.8336% | 131I | 8.02d | |
29 140 |
6.7896% | 133Cs → 134Cs | ∞ 2.065y |
neutron capture converts a few percent of nonradioactive 133Cs to 134Cs, which has very low direct yield because beta decay stops at 134Xe; further capture will add to long-lived 135Cs |
20 | 6.0507% | 99Tc | 211ky | candidate for disposal by nuclear transmutation |
18 | 0.6576% | 129I | 15.7my | candidate for disposal by nuclear transmutation |
2.7 | 6.2956% | 93Zr | 1.53my | transmutation impractical |
1.8 | 0.1629% | 107Pd | 6.5my | |
1.66 | 0.2717% | 85Kr | 10.78y | |
0.90 | 5.7518% | 90Sr | 28.9y | |
0.15 | 0.3912% | 106Ru | 373.6d | |
0.11 | 6.0899% | 137Cs | 30.17y | |
0.0297% | 125Sb | 2.76y | ||
0.0236% | 126Sn | 230ky | ||
0.0508% | 79Se | 295ky |
References
- Chain Fission Yields For 90-Th-232 92-U-233 92-U-235 92-U-238 94-Pu-239 94-Pu-241, and Thermal, Fast, 14MeV.