Golgin subfamily A member 3 is a protein that in humans is encoded by the GOLGA3gene.[1][2][3]
The Golgi apparatus, which participates in glycosylation and transport of proteins and lipids in the secretory pathway, consists of a series of stacked cisternae (flattened membrane sacs). Interactions between the Golgi and microtubules are thought to be important for the reorganization of the Golgi after it fragments during mitosis. This gene encodes a member of the golgin family of proteins which are localized to the Golgi. Its encoded protein has been postulated to play a role in nuclear transport and Golgi apparatus localization. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of these variants has not been determined.[3]
Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID8889548.
Misumi Y, Sohda M, Yano A, et al. (1997). "Molecular characterization of GCP170, a 170-kDa protein associated with the cytoplasmic face of the Golgi membrane". J. Biol. Chem. 272 (38): 23851–8. doi:10.1074/jbc.272.38.23851. PMID9295333.
Barr FA (1999). "A novel Rab6-interacting domain defines a family of Golgi-targeted coiled-coil proteins". Curr. Biol. 9 (7): 381–4. doi:10.1016/S0960-9822(99)80167-5. PMID10209123.
Bray JD, Chennathukuzhi VM, Hecht NB (2002). "Identification and characterization of cDNAs encoding four novel proteins that interact with translin associated factor-X". Genomics. 79 (6): 799–808. doi:10.1006/geno.2002.6779. PMID12036294.
Hicks SW, Machamer CE (2002). "The NH2-terminal domain of Golgin-160 contains both Golgi and nuclear targeting information". J. Biol. Chem. 277 (39): 35833–9. doi:10.1074/jbc.M206280200. PMID12130652.
Ohta E, Misumi Y, Sohda M, et al. (2004). "Identification and characterization of GCP16, a novel acylated Golgi protein that interacts with GCP170". J. Biol. Chem. 278 (51): 51957–67. doi:10.1074/jbc.M310014200. PMID14522980.
Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID14702039.
Hicks SW, Machamer CE (2005). "Isoform-specific interaction of golgin-160 with the Golgi-associated protein PIST". J. Biol. Chem. 280 (32): 28944–51. doi:10.1074/jbc.M504937200. PMID15951434.
Oh JH, Yang JO, Hahn Y, et al. (2006). "Transcriptome analysis of human gastric cancer". Mamm. Genome. 16 (12): 942–54. doi:10.1007/s00335-005-0075-2. PMID16341674.
Sbodio JI, Hicks SW, Simon D, Machamer CE (2006). "GCP60 preferentially interacts with a caspase-generated golgin-160 fragment". J. Biol. Chem. 281 (38): 27924–31. doi:10.1074/jbc.M603276200. PMID16870622.
Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID17081983.
Hicks SW, Horn TA, McCaffery JM, et al. (2007). "Golgin-160 promotes cell surface expression of the beta-1 adrenergic receptor". Traffic. 7 (12): 1666–77. doi:10.1111/j.1600-0854.2006.00504.x. PMID17118120.
Sbodio JI, Machamer CE (2007). "Identification of a redox-sensitive cysteine in GCP60 that regulates its interaction with golgin-160". J. Biol. Chem. 282 (41): 29874–81. doi:10.1074/jbc.M705794200. PMID17711851.