Gestational diabetes pathophysiology

Jump to navigation Jump to search

Diabetes mellitus main page

Gestational diabetes Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Gestational Diabetes from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History and Prognosis

Complications

Maternal
Fetal and Neonatal

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Dietary Therapy

Medical Therapy

Primary Prevention

Secondary Prevention

Surgery

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Gestational diabetes pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Gestational diabetes pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Gestational diabetes pathophysiology

CDC on Gestational diabetes pathophysiology

Gestational diabetes pathophysiology in the news

Blogs on Gestational diabetes pathophysiology

Directions to Hospitals Treating Gestational diabetes

Risk calculators and risk factors for Gestational diabetes pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];Associate Editor(s)-in-Chief: Seyedmahdi Pahlavani, M.D. [2]

Overview

Insulin insensitivity due to hormonal changes in pregnancy (especially during the second and third trimesters), and changes in maternal metabolism, are the main predisposing factors for acquiring gestational diabetes.

Pathophysiology

Maternal metabolic changes during pregnancy varies based on the age of the pregnancy, the maternal nutritional status, and the age of the mother.[1]

Insulin insensitivity

Insulin sensitivity reduces slightly during the first and second trimester, but it decreases by 40-60% during the third trimester.[2][3][4]

Other changes in the molecular level that may lead to insulin resistant include:[5]

  • A reduction in the ability of insulin to phosphorylate the insulin receptor
  • Decreased expression of insulin receptor substrate 1 (IRS-1) and increased levels of a specific kinase

Factors affecting insulin sensitivity include: estrogens and progesterone,[6] human chorionic somatomammotropin (hCS) or placental lactogen (HPL), prolactin, placental growth hormone variant (hGH-V), corticotropin-releasing factor (CRF) and corticotropin, leptin,[7] tumor necrosis factor α (TNF-α),[8] adiponectin,[9] resistin, ghrelin and interleukin-6.

Maternal metabolic changes

Basal and postprandial levels of glucose, FFAs, triglycerides, and amino acids, are higher in GDM than in normal pregnancy.[10]

Maternal hyperglycemia leads to fetal hyperinsulinism, which is responsible for macrosomia and neonatal morbidity. The development of macrosomia (defined as birth weight >4000 g or above the 90th percentile for gestational age), is a frequent complication of pregnancies complicated by DM and GDM.
[11] Increased adiposity is the primary component of the macrosomia. Infants of diabetic mothers may have up to twice the body fat content of infants of normal mothers.[12]

Shown below is a schematic model of the disease progression and consequences.


Pathophysiology of GDM
Pathophysiology of GDM


It has been found that women diagnosed with gestational diabetes already have insulin resistance at baseline, with a higher level of plasma insulin levels. This state gets further aggravated by the metabolic changes associated with pregnancy. The pancreas is unable to cope with the additional stress of increased insulin resistance. This results in an inadequate release of insulin and elevated blood sugar levels.[13]

References

  1. Marangoni, Franca; Cetin, Irene; Verduci, Elvira; Canzone, Giuseppe; Giovannini, Marcello; Scollo, Paolo; Corsello, Giovanni; Poli, Andrea (2016). "Maternal Diet and Nutrient Requirements in Pregnancy and Breastfeeding. An Italian Consensus Document". Nutrients. 8 (10): 629. doi:10.3390/nu8100629. ISSN 2072-6643.
  2. Catalano PM, Tyzbir ED, Wolfe RR, Calles J, Roman NM, Amini SB, Sims EA (1993). "Carbohydrate metabolism during pregnancy in control subjects and women with gestational diabetes". Am. J. Physiol. 264 (1 Pt 1): E60–7. PMID 8430789.
  3. Buchanan TA, Metzger BE, Freinkel N, Bergman RN (1990). "Insulin sensitivity and B-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes". Am. J. Obstet. Gynecol. 162 (4): 1008–14. PMID 2183610.
  4. Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EA (1991). "Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women". Am. J. Obstet. Gynecol. 165 (6 Pt 1): 1667–72. PMID 1750458.
  5. Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE (2007). "Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes". Diabetes Care. 30 Suppl 2: S112–9. doi:10.2337/dc07-s202. PMID 17596458.
  6. Freinkel N (1980). "Banting Lecture 1980. Of pregnancy and progeny". Diabetes. 29 (12): 1023–35. PMID 7002669.
  7. Lepercq J, Cauzac M, Lahlou N, Timsit J, Girard J, Auwerx J, Hauguel-de Mouzon S (1998). "Overexpression of placental leptin in diabetic pregnancy: a critical role for insulin". Diabetes. 47 (5): 847–50. PMID 9588462.
  8. Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L, Friedman JE, Kalhan SC, Catalano PM (2002). "TNF-alpha is a predictor of insulin resistance in human pregnancy". Diabetes. 51 (7): 2207–13. PMID 12086951.
  9. Retnakaran R, Hanley AJ, Raif N, Hirning CR, Connelly PW, Sermer M, Kahn SE, Zinman B (2005). "Adiponectin and beta cell dysfunction in gestational diabetes: pathophysiological implications". Diabetologia. 48 (5): 993–1001. doi:10.1007/s00125-005-1710-x. PMID 15778860.
  10. Metzger BE, Phelps RL, Freinkel N, Navickas IA (1980). "Effects of gestational diabetes on diurnal profiles of plasma glucose, lipids, and individual amino acids". Diabetes Care. 3 (3): 402–9. PMID 7190092.
  11. "care.diabetesjournals.org" (PDF).
  12. Catalano PM, Thomas A, Huston-Presley L, Amini SB (2003). "Increased fetal adiposity: a very sensitive marker of abnormal in utero development". Am. J. Obstet. Gynecol. 189 (6): 1698–704. PMID 14710101.
  13. Plows, Jasmine; Stanley, Joanna; Baker, Philip; Reynolds, Clare; Vickers, Mark (2018). "The Pathophysiology of Gestational Diabetes Mellitus". International Journal of Molecular Sciences. 19 (11): 3342. doi:10.3390/ijms19113342. ISSN 1422-0067.

Template:WH Template:WS