Glutathione S-transferase A1 is an enzyme that in humans is encoded by the GSTA1gene.[1]
Cytosolic and membrane-bound forms of glutathione S-transferase are encoded by two distinct supergene families. These enzymes function in the detoxification of electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress, by conjugation with glutathione. The genes encoding these enzymes are known to be highly polymorphic. These genetic variations can change an individual's susceptibility to carcinogens and toxins as well as affect the toxicity and efficacy of some drugs. At present, eight distinct classes of the soluble cytoplasmic mammalian glutathione S-transferases have been identified: alpha, kappa, mu, omega, pi, sigma, theta and zeta. This gene encodes a glutathione S-transferase belonging to the alpha class. The alpha class genes, located in a cluster mapped to chromosome 6, are the most abundantly expressed glutathione S-transferases in liver (hepatocytes) and kidney (proximal tubules). In addition to metabolizing bilirubin and certain anti-cancer drugs in the liver, the alpha class of these enzymes exhibit glutathione peroxidase activity, thereby protecting the cells from reactive oxygen species and the products of peroxidation.[2]
Release of GST-A1 as an indication of cellular necrosis
Increases in serum and urinary GST-A1 have been found in association with hepatocyte and renal proximal tubular necrosis respectively and have potential for monitoring injury to these tissues.[3][4]
References
↑Mucher G, Becker J, Knapp M, Buttner R, Moser M, Rudnik-Schoneborn S, Somlo S, Germino G, Onuchic L, Avner E, Guay-Woodford L, Zerres K (Apr 1998). "Fine mapping of the autosomal recessive polycystic kidney disease locus (PKHD1) and the genes MUT, RDS, CSNK2 beta, and GSTA1 at 6p21.1-p12". Genomics. 48 (1): 40–5. doi:10.1006/geno.1997.5145. PMID9503014.
↑Knapen, MF; Mulder, TP; Bisseling, JG; Penders, RH; Peters, WH; Steegers, EA (January 1998). "Plasma glutathione S-transferase alpha 1-1: a more sensitive marker for hepatocellular damage than serum alanine aminotransferase in hypertensive disorders of pregnancy". American Journal of Obstetrics and Gynecology. 178 (1 Pt 1): 161–5. doi:10.1016/S0002-9378(98)70645-3. PMID9465822.
↑Heemskerk, S; Pickkers, P; Bouw, MP; Draisma, A; van der Hoeven, JG; Peters, WH; Smits, P; Russel, FG; Masereeuw, R (July 2006). "Upregulation of renal inducible nitric oxide synthase during human endotoxemia and sepsis is associated with proximal tubule injury". Clinical Journal of the American Society of Nephrology. 1 (4): 853–62. doi:10.2215/cjn.00490206. PMID17699297.
Further reading
Morel F, Schulz WA, Sies H (1995). "Gene structure and regulation of expression of human glutathione S-transferases alpha". Biol. Chem. Hoppe-Seyler. 375 (10): 641–9. PMID7888077.
Stenberg G, Björnestedt R, Mannervik B (1992). "Heterologous expression of recombinant human glutathione transferase A1-1 from a hepatoma cell line". Protein Expr. Purif. 3 (1): 80–4. doi:10.1016/1046-5928(92)90060-A. PMID1330133.
Rhoads DM, Zarlengo RP, Tu CP (1987). "The basic glutathione S-transferases from human livers are products of separate genes". Biochem. Biophys. Res. Commun. 145 (1): 474–81. doi:10.1016/0006-291X(87)91345-3. PMID3036131.
Chow NW, Whang-Peng J, Kao-Shan CS, et al. (1988). "Human glutathione S-transferases. The Ha multigene family encodes products of different but overlapping substrate specificities". J. Biol. Chem. 263 (26): 12797–800. PMID3138230.
Tu CP, Qian B (1988). "Nucleotide sequence of the human liver glutathione S-transferase subunit 1 cDNA". Biochem. Soc. Trans. 15 (4): 734–6. PMID3678589.
Tu CP, Qian B (1987). "Human liver glutathione S-transferases: complete primary sequence of an Ha subunit cDNA". Biochem. Biophys. Res. Commun. 141 (1): 229–37. doi:10.1016/S0006-291X(86)80358-8. PMID3800996.
Suzuki T, Smith S, Board PG (1994). "Structure and function of the 5' flanking sequences of the human alpha class glutathione S-transferase genes". Biochem. Biophys. Res. Commun. 200 (3): 1665–71. doi:10.1006/bbrc.1994.1643. PMID8185623.
Anttila S, Hirvonen A, Vainio H, et al. (1994). "Immunohistochemical localization of glutathione S-transferases in human lung". Cancer Res. 53 (23): 5643–8. PMID8242618.
Suzuki T, Johnston PN, Board PG (1994). "Structure and organization of the human alpha class glutathione S-transferase genes and related pseudogenes". Genomics. 18 (3): 680–6. doi:10.1016/S0888-7543(05)80373-8. PMID8307579.
Sinning I, Kleywegt GJ, Cowan SW, et al. (1993). "Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes". J. Mol. Biol. 232 (1): 192–212. doi:10.1006/jmbi.1993.1376. PMID8331657.
Ahmad H, Singhal SS, Saxena M, Awasthi YC (1993). "Characterization of two novel subunits of the alpha-class glutathione S-transferases of human liver". Biochim. Biophys. Acta. 1161 (2–3): 333–6. doi:10.1016/0167-4838(93)90234-i. PMID8431482.
Cameron AD, Sinning I, L'Hermite G, et al. (1996). "Structural analysis of human alpha-class glutathione transferase A1-1 in the apo-form and in complexes with ethacrynic acid and its glutathione conjugate". Structure. 3 (7): 717–27. doi:10.1016/S0969-2126(01)00206-4. PMID8591048.
Mulder TP, Peters WH, Court DA, Jansen JB (1996). "Sandwich ELISA for glutathione S-transferase Alpha 1-1: plasma concentrations in controls and in patients with gastrointestinal disorders". Clin. Chem. 42 (3): 416–9. PMID8598105.
1ags: A SURFACE MUTANT (G82R) OF A HUMAN ALPHA-GLUTATHIONE S-TRANSFERASE SHOWS DECREASED THERMAL STABILITY AND A NEW MODE OF MOLECULAR ASSOCIATION IN THE CRYSTAL
1usb: RATIONAL DESIGN OF A NOVEL ENZYME - EFFICIENT THIOESTER HYDROLYSIS ENABLED BY THE INCORPORATION OF A SINGLE HIS RESIDUE INTO HUMAN GLUTATHIONE TRANSFERASE A1-1