Hypertrophic cardiomyopathy other imaging findings

Jump to navigation Jump to search

Hypertrophic Cardiomyopathy Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hypertrophic Cardiomyopathy from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hypertrophic cardiomyopathy other imaging findings On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hypertrophic cardiomyopathy other imaging findings

CDC on Hypertrophic cardiomyopathy other imaging findings

Hypertrophic cardiomyopathy other imaging findings in the news

Blogs on Hypertrophic cardiomyopathy other imaging findings

Directions to Hospitals Treating Hypertrophic cardiomyopathy

Risk calculators and risk factors for Hypertrophic cardiomyopathy other imaging findings

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Soroush Seifirad, M.D.[2]

Overview

Positron Emission Tomography (PET) may be helpful in the diagnosis of ischemia in patients with hypertrophic cardiomyopathy. PET studies have demonstrated that coronary flow reserve is reduced in patients with HCM. Those patients who subsequently died had a greater reduction in coronary flow reserve at baseline. It has been hypothesized that this ischemia may mediate in part the higher risk in sudden cardiac death.

Other Imaging Findings

Positron Emission Tomography (PET) may be helpful in the diagnosis of ischemia in patients with hypertrophic cardiomyopathy.

Positron Emission Tomography

Positron Emission Tomography (PET) studies have demonstrated that coronary flow reserve is reduced in patients with HCM. Those patients who subsequently died had a greater reduction in coronary flow reserve at baseline. It has been hypothesized that this ischemia may mediate in part the higher risk in sudden cardiac death.

2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy A Report of the American College of Cardiology/American Heart  Association Joint Committee on Clinical Practice Guidelines[1]

Recommendations for Angiography and Invasive Hemodynamic Assessment Referenced studies that support the recommendations are summarized in the Online Data Supplement

Class I
1. For patients with HCM who are candidates for SRT and for whom there is uncertainty regarding the presence or severity of LVOTO on noninvasive imaging studies, invasive hemodynamic assessment with cardiac catheterization is recommended(Level of Evidence: B-NR)

2. In patients with HCM with symptoms or evidence of myocardial ischemia, coronary angiography (CT or invasive) is recommended.(Level of Evidence: B-NR) 3. In patients with HCM who are at risk of coronary atherosclerosis, coronary angiography (CT or invasive) is recommended before surgical myectomy.(Level of Evidence: B-NR)

2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy (DO NOT EDIT)[2]

Detection of Concomitant Coronary Disease (DO NOT EDIT)[2]

Class I
"1. Coronary arteriography (invasive or computed tomographic imaging) is indicated in patients with HOCM with chest discomfort who have an intermediate to high likelihood of CAD when the identification of concomitant CAD will change management strategies. (Level of Evidence: C) "
Class IIa
"1. Assessment of ischemia or perfusion abnormalities suggestive of CAD with single photon emission computed tomography (SPECT) or positron emission tomography (PET) myocardial perfusion imaging (MPI; because of excellent negative predictive value) is reasonable in patients with HCM with chest discomfort and a low likelihood of CAD to rule out possible concomitant CAD. (Level of Evidence: C) "
Class III (No Benefit)
"1. Assessment for the presence of blunted flow reserve (microvascular ischemia) using quantitative myocardial blood flow measurements by PET is not indicated for the assessment of prognosis in patients with HCM. (Level of Evidence: C) "
"2. Routine SPECT MPI or stress echocardiography is not indicated for detection of silent CAD-related ischemia in patients with HCM who are asymptomatic. (Level of Evidence: C) "


References

  1. Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P; et al. (2020). "2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines". Circulation. 142 (25): e558–e631. doi:10.1161/CIR.0000000000000937. PMID 33215931 Check |pmid= value (help).
  2. 2.0 2.1 Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW (2011). "2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". Journal of the American College of Cardiology. 58 (25): e212–60. doi:10.1016/j.jacc.2011.06.011. PMID 22075469. Retrieved 2011-12-19. Unknown parameter |month= ignored (help)