IMP dehydrogenase 2 is the rate-limiting enzyme in the de novo guaninenucleotide biosynthesis. It is thus involved in maintaining cellular guanine deoxy- and ribonucleotide pools needed for DNA and RNA synthesis. IMPDH2 catalyzes the NAD-dependent oxidation of inosine-5'-monophosphate into xanthine-5'-monophosphate, which is then converted into guanosine-5'-monophosphate.[1] IMPDH2 has been identified as an intracellular target of the natural product sanglifehrin A[4]
Clinical significance
This gene is up-regulated in some neoplasms, suggesting it may play a role in malignant transformation.[1]
↑Natsumeda Y, Ohno S, Kawasaki H, Konno Y, Weber G, Suzuki K (March 1990). "Two distinct cDNAs for human IMP dehydrogenase". J. Biol. Chem. 265 (9): 5292–5. PMID1969416.
↑Kost-Alimova MV, Glesne DA, Huberman E, Zelenin AV (1998). "Assignment1 of inosine '-monophosphate dehydrogenase type 2 (IMPDH2) to human chromosome band 3p21.2 by in situ hybridization". Cytogenet. Cell Genet. 82 (3–4): 145–6. doi:10.1159/000015088. PMID9858805.
↑Pua KH, Stiles DT, Sowa ME, Verdine GL (10 January 2017). "IMPDH2 Is an Intracellular Target of the Cyclophilin A and Sanglifehrin A Complex". Cell Rep. 18 (2): 432–442. doi:10.1016/j.celrep.2016.12.030. PMID28076787.
Further reading
Garat A, Cauffiez C, Hamdan-Khalil R, et al. (2009). "IMPDH2 genetic polymorphism: a promoter single-nucleotide polymorphism disrupts a cyclic adenosine monophosphate responsive element". Genet Test Mol Biomarkers. 13 (6): 841–7. doi:10.1089/gtmb.2009.0096. PMID19810816.
Wang J, Zeevi A, Webber S, et al. (2007). "A novel variant L263F in human inosine 5'-monophosphate dehydrogenase 2 is associated with diminished enzyme activity". Pharmacogenet. Genomics. 17 (4): 283–90. doi:10.1097/FPC.0b013e328012b8cf. PMID17496727.
So HC, Fong PY, Chen RY, et al. (2010). "Identification of neuroglycan C and interacting partners as potential susceptibility genes for schizophrenia in a Southern Chinese population". Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B (1): 103–13. doi:10.1002/ajmg.b.30961. PMID19367581.
Grinyó J, Vanrenterghem Y, Nashan B, et al. (2008). "Association of four DNA polymorphisms with acute rejection after kidney transplantation". Transpl. Int. 21 (9): 879–91. doi:10.1111/j.1432-2277.2008.00679.x. PMID18444945.
Ohmann EL, Burckart GJ, Brooks MM, et al. (2010). "Genetic polymorphisms influence mycophenolate mofetil-related adverse events in pediatric heart transplant patients". The Journal of Heart and Lung Transplantation. 29 (5): HASH(0x2dc9fd0). doi:10.1016/j.healun.2009.11.602. PMID20061166.
Sombogaard F, van Schaik RH, Mathot RA, et al. (2009). "Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757T > C polymorphism". Pharmacogenet. Genomics. 19 (8): 626–34. doi:10.1097/FPC.0b013e32832f5f1b. PMID19617864.
Fellenberg J, Bernd L, Delling G, et al. (2007). "Prognostic significance of drug-regulated genes in high-grade osteosarcoma". Mod. Pathol. 20 (10): 1085–94. doi:10.1038/modpathol.3800937. PMID17660802.
Lim J, Hao T, Shaw C, et al. (2006). "A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration". Cell. 125 (4): 801–14. doi:10.1016/j.cell.2006.03.032. PMID16713569.
He Y, Mou Z, Li W, et al. (2009). "Identification of IMPDH2 as a tumor-associated antigen in colorectal cancer using immunoproteomics analysis". Int J Colorectal Dis. 24 (11): 1271–9. doi:10.1007/s00384-009-0759-2. PMID19597826.
Peñuelas S, Noé V, Ciudad CJ (2005). "Modulation of IMPDH2, survivin, topoisomerase I and vimentin increases sensitivity to methotrexate in HT29 human colon cancer cells". FEBS J. 272 (3): 696–710. doi:10.1111/j.1742-4658.2004.04504.x. PMID15670151.
Winnicki W, Weigel G, Sunder-Plassmann G, et al. (2010). "An inosine 5'-monophosphate dehydrogenase 2 single-nucleotide polymorphism impairs the effect of mycophenolic acid". Pharmacogenomics J. 10 (1): 70–6. doi:10.1038/tpj.2009.43. PMID19770842.
Sanquer S, Maison P, Tomkiewicz C, et al. (2008). "Expression of inosine monophosphate dehydrogenase type I and type II after mycophenolate mofetil treatment: a 2-year follow-up in kidney transplantation". Clin. Pharmacol. Ther. 83 (2): 328–35. doi:10.1038/sj.clpt.6100300. PMID17713475.
Mohamed MF, Frye RF, Langaee TY (2008). "Interpopulation variation frequency of human inosine 5'-monophosphate dehydrogenase type II (IMPDH2) genetic polymorphisms". Genet. Test. 12 (4): 513–6. doi:10.1089/gte.2008.0049. PMID18976158.
Chen L, Petrelli R, Olesiak M, et al. (2008). "Bis(sulfonamide) isosters of mycophenolic adenine dinucleotide analogues: inhibition of inosine monophosphate dehydrogenase". Bioorg. Med. Chem. 16 (15): 7462–9. doi:10.1016/j.bmc.2008.06.003. PMID18583139.
Guo D, Han J, Adam BL, et al. (2005). "Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress". Biochem. Biophys. Res. Commun. 337 (4): 1308–18. doi:10.1016/j.bbrc.2005.09.191. PMID16236267.
Kudo M, Saito Y, Sasaki T, et al. (2009). "Genetic variations in the HGPRT, ITPA, IMPDH1, IMPDH2, and GMPS genes in Japanese individuals". Drug Metab. Pharmacokinet. 24 (6): 557–64. doi:10.2133/dmpk.24.557. PMID20045992.