Industrial microbiology
Industrial microbiology or microbial biotechnology encompasses the use of microorganisms in the manufacture of food or industrial products. The use of microorganisms for the production of food, either human or animal, is often considered a branch of food microbiology. The microorganisms used in industrial processes may be natural isolates, laboratory selected mutants or genetically engineered organisms.
Food microbiology
Yogurt, cheese, chocolate, butter, pickles, sauerkraut, soya sauce, vitamins, amino acids, food thickeners (microbial polysaccharides), alcohol, sausages, and silage (animal food) are all produced by industrial microbiology processes. "Good" bacteria such as probiotics are becoming increasingly important in the food industry.[1]
Biopolymers
A huge variety of biopolymers, such as polysaccharides, polyesters, and polyamides, are produced by microorganisms. These products range from viscous solutions to plastics. The genetic manipulation of microorganisms has permitted the biotechnological production of biopolymers with tailored material properties suitable for high-value medical application such as tissue engineering and drug delivery. Industrial microbiology can be used for the biosynthesis of xanthan, alginate, cellulose, cyanophycin, poly(gamma-glutamic acid), levan, hyaluronic acid, organic acids, oligosaccharides and polysaccharides, and polyhydroxyalkanoates.[2]
Bioremediation
Microbial biodegradation of pollutants can be used to cleanup contaminated environments. These bioremediation and biotransformation methods harness naturally occurring microbes to degrade, transform or accumulate a huge range of compounds including hydrocarbons (e.g. oil), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), pharmaceutical substances, radionuclides and metals.[3]
Waste biotreatment
Microorganisms are used to treat the vast quantities of wastes generated by modern societies. Biotreatment, the processing of wastes using living organisms, is an environmentally friendly, relatively simple and cost-effective alternative to physico-chemical clean-up options. Confined environments, such as bioreactors] can be employed in biotreatment processes. [4]
Health-care and medicine
Microorganisms are used to produce human or animal biologicals such as insulin, growth hormone, and antibodies. Diagnostic assays that use monoclonal antibody, DNA probe technology or real-time PCR are used as rapid tests for pathogenic organisms in the clinical laborarory.[5]
Archaea
Examination of microbes living in unusual environments (e.g. high temperatures, salt, low pH or temperature, high radiation) an lead to discovery of microbes with new abilities that can be harnessed for industrial purposes.[6]
Corynebacteria
Corynebacteria are a diverse group Gram-positive bacteria found in a range of different ecological niches such as soil, vegetables, sewage, skin, and cheese smear. Corynebacterium glutamicum is of immense industrial importance and is one of the biotechnologically most important bacterial species with an annual production of more than two million tons of amino acids, mainly L-glutamate and L-lysine. The genome sequence of C. glutamicum has been published.[7]
See also
References
- ↑ Tannock GW (editor). (2005). Probiotics and Prebiotics: Scientific Aspects. Caister Academic Press. ISBN 978-1-904455-01-1.
- ↑ Rehm BHA (editor). (2008). Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives. Caister Academic Press. ISBN 978-1-904455-36-3.
- ↑ Diaz E (editor). (2008). Microbial Biodegradation: Genomics and Molecular Biology (1st ed. ed.). Caister Academic Press. ISBN 978-1-904455-17-2.
- ↑ Watanabe K and Kasai Y (2008). "Emerging Technologies to Analyze Natural Attenuation and Bioremediation". Microbial Biodegradation: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-17-2.
- ↑ Mackay IM (editor). (2007). Real-Time PCR in Microbiology: From Diagnosis to Characterization. Caister Academic Press. ISBN 978-1-904455-18-9.
- ↑ Blum P (editor). (2008). Archaea: New Models for Prokaryotic Biology. Caister Academic Press. ISBN 978-1-904455-27-1.
- ↑ Burkovski A (editor). (2008). Corynebacteria: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-30-1.