Kinesin light chain 1 is a protein that in humans is encoded by the KLC1gene.[1][2][3]
Conventional kinesin is a tetrameric molecule composed of two heavy chains and two light chains, and transports various cargos along microtubules toward their plus ends. The heavy chains provide the motor activity, while the light chains bind to various cargos. This gene encodes a member of the kinesin light chain family. It associates with kinesin heavy chain through an N-terminal domain, and six tetratricopeptide repeat (TPR) motifs are thought to be involved in binding of cargos such as vesicles, mitochondria, and the Golgi complex. Thus, kinesin light chains function as adapter molecules and not motors per se. Although previously named "kinesin 2", this gene is not a member of the kinesin-2 / kinesin heavy chain subfamily of kinesin motor proteins. Extensive alternative splicing produces isoforms with different C-termini that are proposed to bind to different cargos; however, the full-length nature of some of these variants has not been determined.[3]
↑Cabeza-Arvelaiz Y, Shih LC, Hardman N, Asselbergs F, Bilbe G, Schmitz A, White B, Siciliano MJ, Lachman LB (Feb 1994). "Cloning and genetic characterization of the human kinesin light-chain (KLC) gene". DNA Cell Biol. 12 (10): 881–92. doi:10.1089/dna.1993.12.881. PMID8274221.
↑ 2.02.1Bowman AB, Kamal A, Ritchings BW, Philp AV, McGrail M, Gindhart JG, Goldstein LS (Jan 2001). "Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein". Cell. 103 (4): 583–94. doi:10.1016/S0092-8674(00)00162-8. PMID11106729.
↑Diefenbach, Russell J; Diefenbach Eve; Douglas Mark W; Cunningham Anthony L (Dec 2002). "The heavy chain of conventional kinesin interacts with the SNARE proteins SNAP25 and SNAP23". Biochemistry. United States. 41 (50): 14906–15. doi:10.1021/bi026417u. ISSN0006-2960. PMID12475239.
↑ 5.05.1Rahman, A; Friedman D S; Goldstein L S (Jun 1998). "Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins". J. Biol. Chem. UNITED STATES. 273 (25): 15395–403. doi:10.1074/jbc.273.25.15395. ISSN0021-9258. PMID9624122.
Miki H, Okada Y, Hirokawa N (2005). "Analysis of the kinesin superfamily: insights into structure and function". Trends Cell Biol. 15 (9): 467–76. doi:10.1016/j.tcb.2005.07.006. PMID16084724.
Goedert M, Marsh S, Carter N (1996). "Localization of the human kinesin light chain gene (KNS2) to chromosome 14q32.3 by fluorescence in situ hybridization". Genomics. 32 (1): 173–5. doi:10.1006/geno.1996.0102. PMID8786116.
Chernajovsky Y, Brown A, Clark J (1997). "Human kinesin light (beta) chain gene: DNA sequence and functional characterization of its promoter and first exon". DNA Cell Biol. 15 (11): 965–74. doi:10.1089/dna.1996.15.965. PMID8945637.
Rahman A, Friedman DS, Goldstein LS (1998). "Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins". J. Biol. Chem. 273 (25): 15395–403. doi:10.1074/jbc.273.25.15395. PMID9624122.
Gyoeva FK, Bybikova EM, Minin AA (2000). "An isoform of kinesin light chain specific for the Golgi complex". J. Cell Sci. 113 (11): 2047–54. PMID10806115.
Kamal A, Stokin GB, Yang Z, et al. (2001). "Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I". Neuron. 28 (2): 449–59. doi:10.1016/S0896-6273(00)00124-0. PMID11144355.
Diefenbach RJ, Diefenbach E, Douglas MW, Cunningham AL (2003). "The heavy chain of conventional kinesin interacts with the SNARE proteins SNAP25 and SNAP23". Biochemistry. 41 (50): 14906–15. doi:10.1021/bi026417u. PMID12475239.
Behrends U, Schneider I, Rössler S, et al. (2003). "Novel tumor antigens identified by autologous antibody screening of childhood medulloblastoma cDNA libraries". Int. J. Cancer. 106 (2): 244–51. doi:10.1002/ijc.11208. PMID12800201.
McCart AE, Mahony D, Rothnagel JA (2004). "Alternatively spliced products of the human kinesin light chain 1 (KNS2) gene". Traffic. 4 (8): 576–80. doi:10.1034/j.1600-0854.2003.00113.x. PMID12839500.
Dhaenens CM, Van Brussel E, Schraen-Maschke S, et al. (2005). "Association study of three polymorphisms of kinesin light-chain 1 gene with Alzheimer's disease". Neurosci. Lett. 368 (3): 290–2. doi:10.1016/j.neulet.2004.07.040. PMID15364413.
Benzinger A, Muster N, Koch HB, et al. (2005). "Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer". Mol. Cell. Proteomics. 4 (6): 785–95. doi:10.1074/mcp.M500021-MCP200. PMID15778465.