Lorazepam (injection)

Jump to navigation Jump to search

Lorazepam (injection)
Adult Indications & Dosage
Pediatric Indications & Dosage
Contraindications
Warnings & Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Administration & Monitoring
Overdosage
Pharmacology
Clinical Studies
How Supplied
Images
Patient Counseling Information
Precautions with Alcohol
Brand Names
Look-Alike Names

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Chetan Lokhande, M.B.B.S [2]

Disclaimer

WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.

Overview

Lorazepam (injection) is a general anesthetic that is FDA approved for the treatment of anxiety, insomnia, due to anxiety or situational stress, premedication for anesthetic procedure, status epilepticus. Common adverse reactions include neurologic: asthenia (4.2% ), dizziness (6.9% ), sedated (15.9% ), unsteadiness present (3.4%), psychiatric: depression.

Adult Indications and Dosage

FDA-Labeled Indications and Dosage (Adult)

  • Alcohol withdrawal syndrome: 2 mg orally every 6 hr for 4 doses, then 1 mg every 6 hr for 8 doses.
  • Anxiety: initial, 2 to 3 mg/day orally divided into 2 to 3 daily doses.
  • Anxiety: maintenance, 2 to 6 mg/day orally divided into 2 to 3 daily doses; dose may vary from 1 to 10 mg/day.
  • Chemotherapy-induced nausea and vomiting; prophylaxis: a single dose of 0.025 to 0.05 mg/kg (max 4 mg) IM OR IV given slowly (2 mg/min) 30 to 35 min prior to receiving chemotherapy; this dose may be supplemented with oral lorazepam 1 to 2 mg/hr as needed.
  • Insomnia, due to anxiety or situational stress: 2 to 4 mg orally at bedtime.
  • Premedication for anesthetic procedure: 0.05 mg/kg IM (max 4 mg) 2 hours before procedure.
  • Premedication for anesthetic procedure: 0.044 mg/kg IV OR 2 mg (whichever is less); MAX dose 0.05 mg/kg IV OR 4 mg (whichever is less) 15 to 20 minutes before the surgical procedure.
  • Sedation: (intermittent) 0.02 to 0.06 mg/kg IV every 2 to 6 hours.
  • Sedation: (continuous infusion) 0.01 to 0.1 mg/kg/hr IV.
  • Status epilepticus: 4 mg IV given slowly at 2 mg/min, may repeat dose in 10 to 15 min if needed; IM dosing may be used, but IV dosing is preferred.

Off-Label Use and Dosage (Adult)

Guideline-Supported Use

Non–Guideline-Supported Use

Pediatric Indications and Dosage

FDA-Labeled Indications and Dosage (Pediatric)

There is limited information regarding Lorazepam (injection) FDA-Labeled Indications and Dosage (Pediatric) in the drug label.

Off-Label Use and Dosage (Pediatric)

Guideline-Supported Use

  • There is limited information about Off-Label Guideline-Supported Use of Lorazepam in pediatric patients.

Non–Guideline-Supported Use

  • There is limited information about Off-Label Non–Guideline-Supported Use of Lorazepam in pediatric patients.

Contraindications

  • Ativan Injection is contraindicated in patients with a known sensitivity to benzodiazepines or its vehicle (polyethylene glycol, propylene glycol, and benzyl alcohol), in patients with acute narrow-angle glaucoma, or in patients with sleep apnea syndrome. It is also contraindicated in patients with severe respiratory insufficiency, except in those patients requiring relief of anxiety and/or diminished recall of events while being mechanically ventilated. The use of Ativan Injection intra-arterially is contraindicated because, as with other injectable benzodiazepines, inadvertent intra-arterial injection may produce arteriospasm resulting in gangrene which may require amputation (see Warnings)

Warnings

Use in Status Epilepticus
Management of Status Epilepticus
  • Status epilepticus is a potentially life-threatening condition associated with a high risk of permanent neurological impairment, if inadequately treated. The treatment of status, however, requires far more than the administration of an anticonvulsant agent. It involves observation and management of all parameters critical to maintaining vital function and the capacity to provide support of those functions as required. Ventilatory support must be readily available. The use of benzodiazepines, like Ativan Injection, is ordinarily only one step of a complex and sustained intervention which may require additional interventions (e.g., concomitant intravenous administration of phenytoin). Because status epilepticus may result from a correctable acute cause such as hypoglycemia, hyponatremia, or other metabolic or toxic derangement, such an abnormality must be immediately sought and corrected. Furthermore, patients who are susceptible to further seizure episodes should receive adequate maintenance antiepileptic therapy.
  • Any health care professional who intends to treat a patient with status epilepticus should be familiar with this package insert and the pertinent medical literature concerning current concepts for the treatment of status epilepticus. A comprehensive review of the considerations critical to the informed and prudent management of status epilepticus cannot be provided in drug product labeling. The archival medical literature contains many informative references on the management of status epilepticus, among them the report of the working group on status epilepticus of the Epilepsy Foundation of America “Treatment of Convulsive Status Epilepticus” (JAMA 1993; 270:854-859). As noted in the report just cited, it may be useful to consult with a neurologist if a patient fails to respond (e.g., fails to regain consciousness).
  • For the treatment of status epilepticus, the usual recommended dose of Ativan Injection is 4 mg given slowly (2 mg/min) for patients 18 years and older. If seizures cease, no additional Ativan Injection is required. If seizures continue or recur after a 10- to 15- minute observation period, an additional 4 mg intravenous dose may be slowly administered. Experience with further doses of Ativan is very limited. The usual precautions in treating status epilepticus should be employed. An intravenous infusion should be started, vital signs should be monitored, an unobstructed airway should be maintained, and artificial ventilation equipment should be available.
Respiratory Depression
  • The most important risk associated with the use of Ativan Injection in status epilepticus is respiratory depression. Accordingly, airway patency must be assured and respiration monitored closely. Ventilatory support should be given as required.
Excessive Sedation
  • Because of its prolonged duration of action, the prescriber should be alert to the possibility, especially when multiple doses have been given, that the sedative effects of lorazepam may add to the impairment of consciousness seen in the post-ictal state.
Preanesthetic Use
  • Airway obstruction may occur in heavily sedated patients. intravenous lorazepam at any dose, when given either alone or in combination with other drugs administered during anesthesia, may produce heavy sedation; therefore, equipment necessary to maintain a patent airway and to support respiration/ventilation should be available.
  • As is true of similar CNS-acting drugs, the decision as to when patients who have received injectable lorazepam, particularly on an outpatient basis, may again operate machinery, drive a motor vehicle, or engage in hazardous or other activities requiring attention and coordination must be individualized. It is recommended that no patient engage in such activities for a period of 24 to 48 hours or until the effects of the drug, such as drowsiness, have subsided, whichever is longer. Impairment of performance may persist for greater intervals because of extremes of age, concomitant use of other drugs, stress of surgery, or the general condition of the patient.
  • Clinical trials have shown that patients over the age of 50 years may have a more profound and prolonged sedation with intravenous lorazepam (see also Dosage and administration, Preanesthetic).
  • As with all central-nervous-system-depressant drugs, care should be exercised in patients given injectable lorazepam as premature ambulation may result in injury from falling.
  • There is no added beneficial effect from the addition of scopolamine to injectable lorazepam, and their combined effect may result in an increased incidence of sedation, hallucination and irrational behavior.
General (All Uses)
  • Prior to intravenous use, ativan injection must be diluted with an equal amount of compatible diluent (see dosage and administration). intravenous injection should be made slowly and with repeated aspiration. care should be taken to determine that any injection will not be intra-arterial and that perivascular extravasation will not take place. in the event that a patient complains of pain during intended intravenous injection of ativan injection, the injection should be stopped immediately to determine if intra-arterial injection or perivascular extravasation has taken place.
  • Since the liver is the most likely site of conjugation of lorazepam and since excretion of conjugated lorazepam (glucuronide) is a renal function, this drug is not recommended for use in patients with hepatic and/or renal failure. Ativan should be used with caution in patients with mild-to-moderate hepatic or renal disease (see Dosage and administration).
Pregnancy
  • Ativan may cause fetal damage when administered to pregnant women. Ordinarily, Ativan injection should not be used during pregnancy except in serious or life-threatening conditions where safer drugs cannot be used or are ineffective. status epilepticus may represent such a serious and life-threatening condition.
  • An increased risk of congenital malformations associated with the use of minor tranquilizers (chlordiazepoxide, diazepam and meprobamate) during the first trimester of pregnancy has been suggested in several studies. In humans, blood levels obtained from umbilical cord blood indicate placental transfer of lorazepam and lorazepam glucuronide.
  • Reproductive studies in animals were performed in mice, rats, and two strains of rabbits. Occasional anomalies (reduction of tarsals, tibia, metatarsals, malrotated limbs, gastroschisis, malformed skull, and microphthalmia) were seen in drug-treated rabbits without relationship to dosage. Although all of these anomalies were not present in the concurrent control group, they have been reported to occur randomly in historical controls. At doses of 40 mg/kg orally or 4 mg/kg intravenously and higher, there was evidence of fetal resorption and increased fetal loss in rabbits which was not seen at lower doses.
  • The possibility that a woman of childbearing potential may be pregnant at the time of therapy should be considered.
  • There are insufficient data regarding obstetrical safety of parenteral lorazepam, including use in cesarean section. Such use, therefore, is not recommended.
Endoscopic Procedures
  • There are insufficient data to support the use of Ativan Injection for outpatient endoscopic procedures. Inpatient endoscopic procedures require adequate recovery room observation time.
  • When Ativan Injection is used for peroral endoscopic procedures; adequate topical or regional anesthesia is recommended to minimize reflex activity associated with such procedures.

Adverse Reactions

Clinical Trials Experience

Status Epilepticus
  • The most important adverse clinical event caused by the use of Ativan Injection is respiratory depression (see Warnings).
  • The adverse clinical events most commonly observed with the use of Ativan Injection in clinical trials evaluating its use in status epilepticus were hypotension, somnolence, and respiratory failure.
Incidence in Controlled Clinical Trials
  • All adverse events were recorded during the trials by the clinical investigators using terminology of their own choosing. Similar types of events were grouped into standardized categories using modified COSTART dictionary terminology. These categories are used in the table and listings below with the frequencies representing the proportion of individuals exposed to Ativan Injection or to comparative therapy.
  • The prescriber should be aware that these figures cannot be used to predict the frequency of adverse events in the course of usual medical practice where patient characteristics and other factors may differ from those prevailing during clinical studies. Similarly, the cited frequencies cannot be directly compared with figures obtained from other clinical investigators involving different treatment, uses, or investigators. An inspection of these frequencies, however, does provide the prescribing physician with one basis to estimate the relative contribution of drug and nondrug factors to the adverse event incidences in the population studied.
  • Commonly Observed Adverse Events in a Controlled Dose-Comparison Clinical Trial
  • Table 1 lists the treatment-emergent adverse events that occurred in the patients treated with Ativan Injection in a dose-comparison trial of Ativan 1 mg, 2 mg, and 4 mg.
This image is provided by the National Library of Medicine.
Commonly Observed Adverse Events in Active-Controlled Clinical Trials
  • In two studies, patients who completed the course of treatment for status epilepticus were permitted to be reenrolled and to receive treatment for a second status episode, given that there was a sufficient interval between the two episodes. Safety was determined from all treatment episodes for all intent-to-treat patients, i.e., from all “patient-episodes.” Table 2 lists the treatment-emergent adverse events that occurred in at least 1% of the patient-episodes in which Ativan Injection or diazepam was given. The table represents the pooling of results from the two controlled trials.
This image is provided by the National Library of Medicine.
  • These trials were not designed or intended to demonstrate the comparative safety of the two treatments.
  • The overall adverse experience profile for Ativan was similar between women and men. There are insufficient data to support a statement regarding the distribution of adverse events by race. Generally, age greater than 65 years may be associated with a greater incidence of central-nervous-system depression and more respiratory depression.
Other Events Observed During the Pre-Marketing Evaluation of Ativan Injection for the Treatment of Status Epilepticus
  • Ativan Injection, active comparators, and Ativan Injection in combination with a comparator were administered to 488 individuals during controlled and open-label clinical trials. Because of reenrollments, these 488 patients participated in a total of 521 patient-episodes. Ativan Injection alone was given in 69% of these patient-episodes (n=360). The safety information below is based on data available from 326 of these patient-episodes in which Ativan Injection was given alone.
  • All adverse events that were seen once are listed, except those already included in previous listings (Table 1 and Table 2).
  • Study events were classified by body system in descending frequency by using the following definitions: frequent adverse events were those that occurred in at least 1/100 individuals; infrequent study events were those that occurred in 1/100 to 1/1000 individuals.
Frequent and Infrequent Study Events
This image is provided by the National Library of Medicine.
Preanesthetic
Central Nervous System
  • The most frequent adverse drug event reported with injectable lorazepam is central-nervous-system depression. The incidence varied from one study to another, depending on the dosage, route of administration, use of other central-nervous-system depressants, and the investigator’s opinion concerning the degree and duration of desired sedation. Excessive sleepiness and drowsiness were the most common consequences of CNS depression. This interfered with patient cooperation in approximately 6% (25/446) of patients undergoing regional anesthesia, causing difficulty in assessing levels of anesthesia. Patients over 50 years of age had a higher incidence of excessive sleepiness or drowsiness when compared with those under 50 (21/106 versus 24/245) when lorazepam was given intravenously (see DOSAGE AND ADMINISTRATION). On rare occasion (3/1580) the patient was unable to give personal identification in the operating room on arrival, and one patient fell when attempting premature ambulation in the postoperative period.
  • Symptoms such as restlessness, confusion, depression, crying, sobbing, and delirium occurred in about 1.3% (20/1580). One patient injured himself by picking at his incision during the immediate postoperative period.
  • Hallucinations were present in about 1% (14/1580) of patients and were visual and self-limiting.
  • An occasional patient complained of dizziness, diplopia and/or blurred vision. Depressed hearing was infrequently reported during the peak-effect period.
  • An occasional patient had a prolonged recovery room stay, either because of excessive sleepiness or because of some form of inappropriate behavior. The latter was seen most commonly when scopolamine was given concomitantly as a premedicant. Limited information derived from patients who were discharged the day after receiving injectable lorazepam showed one patient complained of some unsteadiness of gait and a reduced ability to perform complex mental functions. Enhanced sensitivity to alcoholic beverages has been reported more than 24 hours after receiving injectable lorazepam, similar to experience with other benzodiazepines.
Local Effects
  • Intramuscular injection of lorazepam has resulted in pain at the injection site, a sensation of burning, or observed redness in the same area in a very variable incidence from one study to another. The overall incidence of pain and burning in patients was about 17% (146/859) in the immediate postinjection period and about 1.4% (12/859) at the 24-hour observation time. Reactions at the injection site (redness) occurred in approximately 2% (17/859) in the immediate postinjection period and were present 24 hours later in about 0.8% (7/859).
  • Intravenous administration of lorazepam resulted in painful responses in 13/771 patients or approximately 1.6% in the immediate postinjection period, and 24 hours later 4/771 patients or about 0.5% still complained of pain. Redness did not occur immediately following intravenous injection but was noted in 19/771 patients at the 24-hour observation period. This incidence is similar to that observed with an intravenous infusion before lorazepam is given. Intra-arterial injection may produce arteriospasm resulting in gangrene which may require amputation (see Contraindications).
Cardiovascular System
  • Hypertension (0.1%) and hypotension (0.1%) have occasionally been observed after patients have received injectable lorazepam.
Respiratory System
  • Five patients (5/446) who underwent regional anesthesia were observed to have airway obstruction. This was believed due to excessive sleepiness at the time of the procedure and resulted in temporary hypoventilation. In this instance, appropriate airway management may become necessary (see also Clinical pharmacology, warnings and precautions).
Other Adverse Experiences
  • Skin rash, nausea and vomiting have occasionally been noted in patients who have received injectable lorazepam combined with other drugs during anesthesia and surgery.
Paradoxical Reactions

Postmarketing Experience

Postmarketing Reports

Drug Interactions

There is limited information regarding Lorazepam (injection) Drug Interactions in the drug label.

Use in Specific Populations

Pregnancy

Pregnancy Category (FDA): D

  • Ativan may cause fetal damage when administered to pregnant women. Ordinarily, Ativan Injection should not be used during pregnancy except in serious or life-threatening conditions where safer drugs cannot be used or are ineffective. Status epilepticus may represent such a serious and life-threatening condition.
  • An increased risk of congenital malformations associated with the use of minor tranquilizers (chlordiazepoxide, diazepam and meprobamate) during the first trimester of pregnancy has been suggested in several studies. In humans, blood levels obtained from umbilical cord blood indicate placental transfer of lorazepam and lorazepam glucuronide.
  • Reproductive studies in animals were performed in mice, rats, and two strains of rabbits. Occasional anomalies (reduction of tarsals, tibia, metatarsals, malrotated limbs, gastroschisis, malformed skull, and microphthalmia) were seen in drug-treated rabbits without relationship to dosage. Although all of these anomalies were not present in the concurrent control group, they have been reported to occur randomly in historical controls. At doses of 40 mg/kg orally or 4 mg/kg intravenously and higher, there was evidence of fetal resorption and increased fetal loss in rabbits which was not seen at lower doses.
  • The possibility that a woman of childbearing potential may be pregnant at the time of therapy should be considered.
  • There are insufficient data regarding obstetrical safety of parenteral lorazepam, including use in cesarean section. Such use, therefore, is not recommended.


Pregnancy Category (AUS): There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Lorazepam (injection) in women who are pregnant.

Labor and Delivery

  • There are insufficient data to support the use of Ativan (lorazepam) Injection during labor and delivery, including cesarean section; therefore, its use in this clinical circumstance is not recommended.

Nursing Mothers

  • Lorazepam has been detected in human breast milk. Therefore, lorazepam should not be administered to nursing mothers because, like other benzodiazepines, the possibility exists that lorazepam may sedate or otherwise adversely affect the infant.

Pediatric Use

Neonates (Birth to 1 month)
  • Following a single 0.05 mg/kg (n=4) or 0.1 mg/kg (n=6) intravenous dose of lorazepam, mean total clearance normalized to body weight was reduced by 80% compared to normal adults, terminal half-life was prolonged 3-fold, and volume of distribution was decreased by 40% in neonates with asphyxia neonatorum compared to normal adults. All neonates were of ≥37 weeks of gestational age.
Infants (1 Month UP TO 2 Years)
  • There is no information on the pharmacokinetic profile of lorazepam in infants in the age range of 1 month to 2 years.
Children (2 Years TO 12 Years)
  • Total (bound and unbound) lorazepam had a 50% higher mean volume of distribution (normalized to body-weight) and a 30% longer mean half-life in children with acute lymphocytic leukemia in complete remission (2 to 12 years, n=37) compared to normal adults (n=10). Unbound lorazepam clearance normalized to body-weight was comparable in children and adults.

Geriatic Use

  • Following single intravenous doses of 1.5 to 3 mg of Ativan Injection, mean total body clearance of lorazepam decreased by 20% in 15 elderly subjects of 60 to 84 years of age compared to that in 15 younger subjects of 19 to 38 years of age. Consequently, no dosage adjustment appears to be necessary in elderly subjects based solely on their age

Gender

  • Gender has no effect on the pharmacokinetics of lorazepam.

Race

  • Young Americans (n=15) and Japanese subjects (n=7) had very comparable mean total clearance value of 1.0 mL/min/kg. However, elderly Japanese subjects had a 20% lower mean total clearance than elderly Americans, 0.59 mL/min/kg vs 0.77 mL/min/kg, respectively.

Renal Impairment

  • Because the kidney is the primary route of elimination of lorazepam glucuronide, renal impairment would be expected to compromise its clearance. This should have no direct effect on the glucuronidation (and inactivation) of lorazepam. There is a possibility that the enterohepatic circulation of lorazepam glucuronide leads to a reduced efficiency of the net clearance of lorazepam in this population.
  • Six normal subjects, six patients with renal impairment (Clcr of 22±9 mL/min), and four patients on chronic maintenance hemodialysis were given single 1.5 to 3.0 mg intravenous doses of lorazepam. Mean volume of distribution and terminal half-life values of lorazepam were 40% and 25% higher, respectively, in renally impaired patients than in normal subjects. Both parameters were 75% higher in patients undergoing hemodialysis than in normal subjects. Overall, though, in this group of subjects the mean total clearance of lorazepam did not change. About 8% of the administered intravenous dose was removed as intact lorazepam during the 6-hour dialysis session.
  • The kinetics of lorazepam glucuronide were markedly affected by renal dysfunction. The mean terminal half-life was prolonged by 55% and 125% in renally impaired patients and patients under hemodialysis, respectively, as compared to normal subjects. The mean metabolic clearance decreased by 75% and 90% in renally impaired patients and patients under hemodialysis, respectively, as compared with normal subjects. About 40% of the administered lorazepam intravenous dose was removed as glucuronide conjugate during the 6-hour dialysis session.

Hepatic Impairment

  • Because cytochrome oxidation is not involved with the metabolism of lorazepam, liver disease would not be expected to have an effect on metabolic clearance. This prediction is supported by the observation that following a single 2 mg intravenous dose of lorazepam, cirrhotic male patients (n=13) and normal male subjects (n=11) exhibited no substantive difference in their ability to clear lorazepam.

Females of Reproductive Potential and Males

There is no FDA guidance on the use of Lorazepam (injection) in women of reproductive potentials and males.

Immunocompromised Patients

There is no FDA guidance one the use of Lorazepam (injection) in patients who are immunocompromised.

Administration and Monitoring

Administration

There is limited information regarding Lorazepam (injection) Administration in the drug label.

Monitoring

There is limited information regarding Lorazepam (injection) Monitoring in the drug label.

IV Compatibility

There is limited information regarding the compatibility of Lorazepam (injection) and IV administrations.

Overdosage

Symptoms
  • Overdosage of benzodiazepines is usually manifested by varying degrees of central-nervous-system depression, ranging from drowsiness to coma. In mild cases symptoms include drowsiness, mental confusion and lethargy. In more serious examples, symptoms may include ataxia, hypotonia, hypotension, hypnosis, stages one (1) to three (3) coma, and, very rarely, death.
Treatment
  • Treatment of overdosage is mainly supportive until the drug is eliminated from the body. Vital signs and fluid balance should be carefully monitored in conjunction with close observation of the patient. An adequate airway should be maintained and assisted respiration used as needed. With normally functioning kidneys, forced diuresis with intravenous fluids and electrolytes may accelerate elimination of benzodiazepines from the body. In addition, osmotic diuretics, such as mannitol, may be effective as adjunctive measures. In more critical situations, renal dialysis and exchange blood transfusions may be indicated. Lorazepam does not appear to be removed in significant quantities by dialysis, although lorazepam glucuronide may be highly dialyzable. The value of dialysis has not been adequately determined for lorazepam.
  • The benzodiazepine antagonist flumazenil may be used in hospitalized patients as an adjunct to, not as a substitute for, proper management of benzodiazepine overdose. The prescriber should be aware of a risk of seizure in association with flumazenil treatment, particularly in long-term benzodiazepine users and in cyclic antidepressant overdose. The complete flumazenil package insert including Contraindications, Warnings and Precautions should be consulted prior to use.

Pharmacology

Template:Px
Template:Px
Lorazepam (injection)
Systematic (IUPAC) name
(RS)-7-Chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-2H-1,4-benzodiazepin-2-one
Identifiers
CAS number 846-49-1
ATC code N05BA06
PubChem 3958
DrugBank DB00186
Chemical data
Formula Template:OrganicBox atomTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox 
Mol. mass 321.2 g/mol
SMILES eMolecules & PubChem
Synonyms O-Chloroxazepam, L-Lorazepam Acetate
Pharmacokinetic data
Bioavailability 85% of oral dose
Metabolism Hepatic glucuronidation
Half life 9–16 hours[1][2][3]
Excretion Renal
Therapeutic considerations
Pregnancy cat.

C(AU) D(US)

Legal status

Prescription Only (S4)(AU) Schedule IV(CA) ?(UK) Schedule IV(US)

Dependence Liability Moderate
Routes Oral, intramuscular, intravenous, sublingual, and transdermal

Mechanism of Action

  • Lorazepam interacts with the γ-aminobutyric acid (GABA)-benzodiazepine receptor complex, which is widespread in the brain of humans as well as other species. This interaction is presumed to be responsible for lorazepam’s mechanism of action. Lorazepam exhibits relatively high and specific affinity for its recognition site but does not displace GABA. Attachment to the specific binding site enhances the affinity of GABA for its receptor site on the same receptor complex. The pharmacodynamic consequences of benzodiazepine agonist actions include antianxiety effects, sedation, and reduction of seizure activity. The intensity of action is directly related to the degree of benzodiazepine receptor occupancy.

Structure

  • Lorazepam, a benzodiazepine with antianxiety, sedative, and anticonvulsant effects, is intended for the intramuscular or intravenous routes of administration. It has the chemical formula: 7-chloro-5(2-chlorophenyl)-1,3-dihydro-3-hydroxy-2H-1, 4-benzodiazepin-2-one. The molecular weight is 321.16, and the C.A.S. No. is [846-49-1]. The structural formula is:
This image is provided by the National Library of Medicine.
  • Lorazepam is a nearly white powder almost insoluble in water. Each mL of sterile injection contains either 2.0 or 4.0 mg of lorazepam, 0.18 mL polyethylene glycol 400 in propylene glycol with 2.0% benzyl alcohol as preservative.

Pharmacodynamics

Effects in Pre-Operative Patients
  • Intravenous or intramuscular administration of the recommended dose of 2 mg to 4 mg of Ativan Injection to adult patients is followed by dose-related effects of sedation (sleepiness or drowsiness), relief of preoperative anxiety, and lack of recall of events related to the day of surgery in the majority of patients. The clinical sedation (sleepiness or drowsiness) thus noted is such that the majority of patients are able to respond to simple instructions whether they give the appearance of being awake or asleep. The lack of recall is relative rather than absolute, as determined under conditions of careful patient questioning and testing, using props designed to enhance recall. The majority of patients under these reinforced conditions had difficulty recalling perioperative events or recognizing props from before surgery. The lack of recall and recognition was optimum within 2 hours following intramuscular administration and 15 to 20 minutes after intravenous injection.
  • The intended effects of the recommended adult dose of Ativan Injection usually last 6 to 8 hours. In rare instances, and where patients received greater than the recommended dose, excessive sleepiness and prolonged lack of recall were noted. As with other benzodiazepines, unsteadiness, enhanced sensitivity to CNS-depressant effects of ethyl alcohol and other drugs were noted in isolated and rare cases for greater than 24 hours.
Physiologic Effects in Healthy Adults
  • Studies in healthy adult volunteers reveal that intravenous lorazepam in doses up to 3.5 mg/70 kg does not alter sensitivity to the respiratory stimulating effect of carbon dioxide and does not enhance the respiratory-depressant effects of doses of meperidine up to 100 mg/70 kg (also determined by carbon dioxide challenge) as long as patients remain sufficiently awake to undergo testing. Upper airway obstruction has been observed in rare instances where the patient received greater than the recommended dose and was excessively sleepy and difficult to arouse (see Warnings and adverse reactions).
  • Clinically employed doses of Ativan Injection do not greatly affect the circulatory system in the supine position or employing a 70-degree tilt test. Doses of 8 mg to 10 mg of intravenous lorazepam (2 to 2-1/2 times the maximum recommended dosage) will produce loss of lid reflexes within 15 minutes.
  • Studies in 6 healthy young adults who received lorazepam injection and no other drugs revealed that visual tracking (the ability to keep a moving line centered) was impaired for a mean of 8 hours following administration of 4 mg of intramuscular lorazepam and 4 hours following administration of 2 mg intramuscularly with considerable subject variation. Similar findings were noted with pentobarbital, 150 and 75 mg. Although this study showed that both lorazepam and pentobarbital interfered with eye-hand coordination, the data are insufficient to predict when it would be safe to operate a motor vehicle or engage in a hazardous occupation or sport.

Pharmacokinetics

Absorption
Intravenous
  • A 4-mg dose provides an initial concentration of approximately 70 ng/mL.
Intramuscular
  • Following intramuscular administration, lorazepam is completely and rapidly absorbed reaching peak concentrations within 3 hours. A 4-mg dose provides a Cmax of approximately 48 ng/mL. Following administration of 1.5 to 5.0 mg of lorazepam IM, the amount of lorazepam delivered to the circulation is proportional to the dose administered.
Distribution/Metabolism/Elimination
  • At clinically relevant concentrations, lorazepam is 91±2% bound to plasma proteins; its volume of distribution is approximately 1.3 L/kg. Unbound lorazepam penetrates the blood/brain barrier freely by passive diffusion, a fact confirmed by CSF sampling. Following parenteral administration, the terminal half-life and total clearance averaged 14±5 hours and 1.1±0.4 mL/min/kg, respectively.
  • Lorazepam is extensively conjugated to the 3-O-phenolic glucuronide in the liver and is known to undergo enterohepatic recirculation. Lorazepam glucuronide is an inactive metabolite and is eliminated mainly by the kidneys.
  • Following a single 2-mg oral dose of 14C-lorazepam to 8 healthy subjects, 88±4% of the administered dose was recovered in urine and 7±2% was recovered in feces. The percent of administered dose recovered in urine as lorazepam glucuronide was 74±4%. Only 0.3% of the dose was recovered as unchanged lorazepam, and the remainder of the radioactivity represented minor metabolites.

Nonclinical Toxicology

There is limited information regarding Lorazepam (injection) Nonclinical Toxicology in the drug label.

Clinical Studies

  • The effectiveness of Ativan Injection in status epilepticus was established in two multi-center controlled trials in 177 patients. With rare exceptions, patients were between 18 and 65 years of age. More than half the patients in each study had tonic-clonic status epilepticus; patients with simple partial and complex partial status epilepticus comprised the rest of the population studied, along with a smaller number of patients who had absence status.
  • One study (n=58) was a double-blind active-control trial comparing Ativan Injection and diazepam. Patients were randomized to receive Ativan 2 mg IV (with an additional 2 mg IV if needed) or diazepam 5 mg IV (with an additional 5 mg IV if needed). The primary outcome measure was a comparison of the proportion of responders in each treatment group, where a responder was defined as a patient whose seizures stopped within 10 minutes after treatment and who continued seizure-free for at least an additional 30 minutes. Twenty-four of the 30 (80%) patients were deemed responders to Ativan and 16/28 (57%) patients were deemed responders to diazepam (p=0.04). Of the 24 Ativan responders, 23 received both 2 mg infusions.
  • Non-responders to Ativan 4 mg were given an additional 2 to 4 mg Ativan; non-responders to diazepam 10 mg were given an additional 5 to 10 mg diazepam. After this additional dose administration, 28/30 (93%) of patients randomized to Ativan and 24/28 (86%) of patients randomized to diazepam were deemed responders, a difference that was not statistically significant.
  • Although this study provides support for the efficacy of Ativan as the treatment for status epilepticus, it cannot speak reliably or meaningfully to the comparative performance of either diazepam (Valium) or lorazepam (Ativan Injection) under the conditions of actual use.
  • A second study (n=119) was a double-blind dose-comparison trial with 3 doses of Ativan Injection: 1 mg, 2 mg, and 4 mg. Patients were randomized to receive one of the three doses of Ativan. The primary outcome and definition of responder were as in the first study. Twenty-five of 41 patients (61%) responded to 1 mg Ativan; 21/37 patients (57%) responded to 2 mg Ativan; and 31/41 (76%) responded to 4 mg Ativan. The p-value for a statistical test of the difference between the Ativan 4 mg dose group and the Ativan 1-mg dose group was 0.08 (two-sided). Data from all randomized patients were used in this test.
  • Although analyses failed to detect an effect of age, sex, or race on the effectiveness of Ativan in status epilepticus, the numbers of patients evaluated were too few to allow a definitive conclusion about the role these factors may play.

How Supplied

  • Ativan (lorazepam) Injection is available in the following dosage strengths in single-dose and multiple-dose vials:
2 mg per mL,
NDC 60977-112-01, 25 x 1 mL vial
NDC 60977-116-02, 10 x 10 mL vial
4 mg per mL,
NDC 60977-113-01, 25 x 1 mL vial
NDC 60977-113-02, 10 x 10 mL vial
For IM or IV injection.

Storage

  • Store in a refrigerator.
Protect from light.
Use carton to protect contents from light.
Baxter is a trademark of Baxter International Inc.
Ativan is a trademark of Biovail Laboratories International SRL.
Manufactured by
Baxter Healthcare Corporation
Deerfield, IL 60015 USA
For Product Inquiry 1 800 ANA DRUG (1-800-262-3784)
MLT01086,B

Images

Drug Images

{{#ask: Page Name::Lorazepam (injection) |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}

Package and Label Display Panel

{{#ask: Label Page::Lorazepam (injection) |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}

Patient Counseling Information

There is limited information regarding Lorazepam (injection) Patient Counseling Information in the drug label.

Precautions with Alcohol

Alcohol-Lorazepam interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.

Brand Names

There is limited information regarding Lorazepam (injection) Brand Names in the drug label.

Look-Alike Drug Names

There is limited information regarding Lorazepam (injection) Look-Alike Drug Names in the drug label.

Drug Shortage Status

Price

References

The contents of this FDA label are provided by the National Library of Medicine.

  1. Greenblatt DJ, Shader RI, Franke K, Maclaughlin DS, Harmatz JS, Allen MD, Werner A, Woo E (1991). "Pharmacokinetics and bioavailability of intravenous, intramuscular, and oral lorazepam in humans". Journal of Pharmaceutical Sciences. 68 (1): 57–63. doi:10.1002/jps.2600680119. PMID 31453.
  2. Greenblatt DJ, von Moltke LL, Ehrenberg BL, Harmatz JS, Corbett KE, Wallace DW, Shader RI (2000). "Kinetics and dynamics of lorazepam during and after continuous intravenous infusion". Critical Care Medicine. 28 (8): 2750–2757. doi:10.1097/00003246-200008000-00011. PMID 10966246.
  3. Papini O, da Cunha SP, da Silva Mathes Ado C, Bertucci C, Moisés EC, de Barros Duarte L, de Carvalho Cavalli R, Lanchote VL (2006). "Kinetic disposition of lorazepam with a focus on the glucuronidation capacity, transplacental transfer in parturients and racemization in biological samples". Journal of Pharmaceutical and Biomedical Analysis. 40 (2): 397–403. doi:10.1016/j.jpba.2005.07.021. PMID 16143486.

{{#subobject:

 |Label Page=Lorazepam (injection)
 |Label Name=Lorazepam label.png

}}

Synonyms / Brand Names:Almazine, Alzapam, Anxiedin, Aplacassee, Ativan, Bonatranquan, Delormetazepam, Emotival, Idalprem, Lorabenz, Lorax, Loraz, Lorazepam Intensol, Lorsilan, Pro Dorm, Psicopax, Punktyl, Quait, Securit, Sedatival, Sedazin, Somagerol, Tavor, Temesta, Wypax