Myristoylated alanine-rich C-kinase substrate is a protein that in humans is encoded by the MARCKSgene.[1][2][3]
It plays important roles in cell shape, cell motility, secretion, transmembrane transport, regulation of the cell cycle, and neural development.[4] Recently, MARCKS has been implicated in the exocytosis of a number of vesicles and granules such as mucin and chromaffin.
It is also the name of a protein family, of which MARCKS is the most studied member. They are intrinsically disordered proteins, with an acidic pH, with high proportions of alanine, glycine, proline, and glutamic acid. They are membrane-bound through a lipid anchor at the N-terminus, and a polybasic domain in the middle. They are regulated by Ca2+/calmodulin and protein kinase C. In their unphosphorylated form, they bind to actin filaments, causing them to crosslink, and sequester acidic membrane phospholipids such as PIP2.
The protein encoded by this gene is a substrate for protein kinase C. It is localized to the plasma membrane and is an actin filament crosslinking protein. Phosphorylation by protein kinase C or binding to calcium-calmodulin inhibits its association with actin and with the plasma membrane, leading to its presence in the cytoplasm. The protein is thought to be involved in cell motility, phagocytosis, membrane trafficking and mitogenesis.[3]
↑Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC, Aderem A (May 1992). "MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin". Nature. 356 (6370): 618–22. Bibcode:1992Natur.356..618H. doi:10.1038/356618a0. PMID1560845.
↑Blackshear PJ (Feb 1993). "The MARCKS family of cellular protein kinase C substrates". J Biol Chem. 268 (3): 1501–4. PMID8420923.
↑PRIETO, DANIEL; ZOLESSI, FLAVIO R. (August 2016). "Functional Diversification of the Four MARCKS Family Members in Zebrafish Neural Development". Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 328: 119–138. doi:10.1002/jez.b.22691.
↑Jin Cho, S; La M; Ahn J K; Meadows G G; Joe C O (May 2001). "Tob-mediated cross-talk between MARCKS phosphorylation and ErbB-2 activation". Biochem. Biophys. Res. Commun. United States. 283 (2): 273–7. doi:10.1006/bbrc.2001.4773. ISSN0006-291X. PMID11327693.
Aderem A (1996). "The MARCKS family of protein kinase-C substrates". Biochem. Soc. Trans. 23 (3): 587–91. PMID8566422.
Herget T, Brooks SF, Broad S, Rozengurt E (1992). "Relationship between the major protein kinase C substrates acidic 80-kDa protein-kinase-C substrate (80K) and myristoylated alanine-rich C-kinase substrate (MARCKS). Members of a gene family or equivalent genes in different species". Eur. J. Biochem. 209 (1): 7–14. doi:10.1111/j.1432-1033.1992.tb17255.x. PMID1396720.
Sakai K, Hirai M, Kudoh J, et al. (1992). "Molecular cloning and chromosomal mapping of a cDNA encoding human 80K-L protein: major substrate for protein kinase C". Genomics. 14 (1): 175–8. doi:10.1016/S0888-7543(05)80301-5. PMID1427823.
Harlan DM, Graff JM, Stumpo DJ, et al. (1991). "The human myristoylated alanine-rich C kinase substrate (MARCKS) gene (MACS). Analysis of its gene product, promoter, and chromosomal localization". J. Biol. Chem. 266 (22): 14399–405. PMID1860846.
Graff JM, Stumpo DJ, Blackshear PJ (1989). "Characterization of the phosphorylation sites in the chicken and bovine myristoylated alanine-rich C kinase substrate protein, a prominent cellular substrate for protein kinase C". J. Biol. Chem. 264 (20): 11912–9. PMID2473066.
Herget T, Oehrlein SA, Pappin DJ, et al. (1995). "The myristoylated alanine-rich C-kinase substrate (MARCKS) is sequentially phosphorylated by conventional, novel and atypical isotypes of protein kinase C". Eur. J. Biochem. 233 (2): 448–57. doi:10.1111/j.1432-1033.1995.448_2.x. PMID7588787.
Taniguchi H, Manenti S, Suzuki M, Titani K (1994). "Myristoylated alanine-rich C kinase substrate (MARCKS), a major protein kinase C substrate, is an in vivo substrate of proline-directed protein kinase(s). A mass spectroscopic analysis of the post-translational modifications". J. Biol. Chem. 269 (28): 18299–302. PMID8034575.
Rao PH, Murty VV, Gaidano G, et al. (1994). "Subregional mapping of 8 single copy loci to chromosome 6 by fluorescence in situ hybridization". Cytogenet. Cell Genet. 66 (4): 272–3. doi:10.1159/000133710. PMID8162705.
Taniguchi H, Manenti S (1993). "Interaction of myristoylated alanine-rich protein kinase C substrate (MARCKS) with membrane phospholipids". J. Biol. Chem. 268 (14): 9960–3. PMID8486722.
Palmer RH, Schönwasser DC, Rahman D, et al. (1996). "PRK1 phosphorylates MARCKS at the PKC sites: serine 152, serine 156 and serine 163". FEBS Lett. 378 (3): 281–5. doi:10.1016/0014-5793(95)01454-3. PMID8557118.
Swierczynski SL, Blackshear PJ (1996). "Myristoylation-dependent and electrostatic interactions exert independent effects on the membrane association of the myristoylated alanine-rich protein kinase C substrate protein in intact cells". J. Biol. Chem. 271 (38): 23424–30. doi:10.1074/jbc.271.38.23424. PMID8798548.
Spizz G, Blackshear PJ (1997). "Identification and characterization of cathepsin B as the cellular MARCKS cleaving enzyme". J. Biol. Chem. 272 (38): 23833–42. doi:10.1074/jbc.272.38.23833. PMID9295331.
Qi Q, Rajala RV, Anderson W, et al. (2000). "Molecular cloning, genomic organization, and biochemical characterization of myristoyl-CoA:protein N-myristoyltransferase from Arabidopsis thaliana". J. Biol. Chem. 275 (13): 9673–83. doi:10.1074/jbc.275.13.9673. PMID10734119.
Jin Cho S, La M, Ahn JK, et al. (2001). "Tob-mediated cross-talk between MARCKS phosphorylation and ErbB-2 activation". Biochem. Biophys. Res. Commun. 283 (2): 273–7. doi:10.1006/bbrc.2001.4773. PMID11327693.
Li Y, Martin LD, Spizz G, Adler KB (2001). "MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro". J. Biol. Chem. 276 (44): 40982–90. doi:10.1074/jbc.M105614200. PMID11533058.
Rauch ME, Ferguson CG, Prestwich GD, Cafiso DS (2002). "Myristoylated alanine-rich C kinase substrate (MARCKS) sequesters spin-labeled phosphatidylinositol 4,5-bisphosphate in lipid bilayers". J. Biol. Chem. 277 (16): 14068–76. doi:10.1074/jbc.M109572200. PMID11825894.