Microtechnology

Jump to navigation Jump to search

WikiDoc Resources for Microtechnology

Articles

Most recent articles on Microtechnology

Most cited articles on Microtechnology

Review articles on Microtechnology

Articles on Microtechnology in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Microtechnology

Images of Microtechnology

Photos of Microtechnology

Podcasts & MP3s on Microtechnology

Videos on Microtechnology

Evidence Based Medicine

Cochrane Collaboration on Microtechnology

Bandolier on Microtechnology

TRIP on Microtechnology

Clinical Trials

Ongoing Trials on Microtechnology at Clinical Trials.gov

Trial results on Microtechnology

Clinical Trials on Microtechnology at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Microtechnology

NICE Guidance on Microtechnology

NHS PRODIGY Guidance

FDA on Microtechnology

CDC on Microtechnology

Books

Books on Microtechnology

News

Microtechnology in the news

Be alerted to news on Microtechnology

News trends on Microtechnology

Commentary

Blogs on Microtechnology

Definitions

Definitions of Microtechnology

Patient Resources / Community

Patient resources on Microtechnology

Discussion groups on Microtechnology

Patient Handouts on Microtechnology

Directions to Hospitals Treating Microtechnology

Risk calculators and risk factors for Microtechnology

Healthcare Provider Resources

Symptoms of Microtechnology

Causes & Risk Factors for Microtechnology

Diagnostic studies for Microtechnology

Treatment of Microtechnology

Continuing Medical Education (CME)

CME Programs on Microtechnology

International

Microtechnology en Espanol

Microtechnology en Francais

Business

Microtechnology in the Marketplace

Patents on Microtechnology

Experimental / Informatics

List of terms related to Microtechnology


Microtechnology is technology with features near one micrometre (one millionth of a metre, or 10-6 metre, or 1μm).

In the 1960s, scientists learned that by arraying large numbers of microscopic transistors on a single chip, microelectronic circuits could be built that dramatically improved performance, functionality, and reliability, all while reducing cost and decreasing volume. This development led to the Information Revolution.

More recently, scientists have learned that not only electrical devices, but also mechanical devices, may be miniaturized and batch-fabricated, promising the same benefits to the mechanical world as integrated circuit technology has given to the electrical world. While electronics now provide the ‘brains’ for today’s advanced systems and products, micromechanical devices can provide the sensors and actuators — the eyes and ears, hands and feet — which interface to the outside world.

Today, micromechanical devices are the key components in a wide range of products such as automobile airbags, ink-jet printers, blood pressure monitors, and projection display systems. It seems clear that in the not-too-distant future these devices will be as pervasive as electronics.

Micro electromechanical systems

File:Etchedwafer.jpg
An etched silicon wafer

The term MEMS, for Micro Electro Mechanical Systems, was coined in the 1980’s to describe new, sophisticated mechanical systems on a chip, such as micro electric motors, resonators, gears, and so on. Today, the term MEMS in practice is used to refer to any microscopic device with a mechanical function, which can be fabricated in a batch process (for example, an array of microscopic gears fabricated on a microchip would be considered a MEMS device but a tiny laser-machined stent or watch component would not). In Europe, the term MST for Micro System Technology is preferred, and in Japan MEMS are simply referred to as "micromachines". The distinctions in these terms are relatively minor and are often used interchangeably.

Though MEMS processes are generally classified into a number of categories – such as surface machining, bulk machining, LIGA, and EFAB – there are indeed thousands of different MEMS processes. Some produce fairly simple geometries, while others offer more complex 3-D geometries and more versatility. A company making accelerometers for airbags would need a completely different design and process to produce an accelerometer for inertial navigation. Changing from an accelerometer to another inertial device such as a gyroscope requires an even greater change in design and process, and most likely a completely different fabrication facility and engineering team.

MEMS technology has generated a tremendous amount of excitement, due to the vast range of important applications where MEMS can offer previously unattainable performance and reliability standards. In an age where everything must be smaller, faster, and cheaper, MEMS offers a compelling solution. MEMS have already had a profound impact on certain applications such as automotive sensors and inkjet printers. The emerging MEMS industry is already a multi-billion dollar market. It is expected to grow rapidly and become one of the major industries of the 21st century. Cahners In-Stat Group has projected sales of MEMS to reach $12B by 2005. The European NEXUS group projects even larger revenues, using a more inclusive definition of MEMS.

Microtechnology is often constructed using photolithography. Lightwaves are focused through a mask onto a surface. They solidify a chemical film. The soft, unexposed parts of the film are washed away. Then acid etches away the material not protected.

Microtechnology's most famous success is the integrated circuit. It has also been used to construct micromachinery.

Items constructed at the microscopic level

The following items have been constructed on a scale of 1 micrometre using photolithography:

Template:Microtechnology

External links

See also


Template:Technology Template:Wikibooks


bn:মাইক্রোপ্রযুক্তি de:Mikrotechnik fi:Mikroteknologia th:ไมโครเทคโนโลยี

Template:WS