HEC is one of several proteins involved in spindle checkpoint signaling. This surveillance mechanism assures correct segregation of chromosomes during cell division by detecting unaligned chromosomes and causing prometaphase arrest until the proper bipolar attachment of chromosomes is achieved.[supplied by OMIM][3]
↑Obuse C, Iwasaki O, Kiyomitsu T, Goshima G, Toyoda Y, Yanagida M (November 2004). "A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1". Nature Cell Biology. 6 (11): 1135–41. doi:10.1038/ncb1187. PMID15502821.
↑Chen Y, Riley DJ, Zheng L, Chen PL, Lee WH (December 2002). "Phosphorylation of the mitotic regulator protein Hec1 by Nek2 kinase is essential for faithful chromosome segregation". The Journal of Biological Chemistry. 277 (51): 49408–16. doi:10.1074/jbc.M207069200. PMID12386167.
↑ 9.09.1Chen Y, Sharp ZD, Lee WH (September 1997). "HEC binds to the seventh regulatory subunit of the 26 S proteasome and modulates the proteolysis of mitotic cyclins". The Journal of Biological Chemistry. 272 (38): 24081–7. doi:10.1074/jbc.272.38.24081. PMID9295362.
Further reading
Chen Y, Sharp ZD, Lee WH (September 1997). "HEC binds to the seventh regulatory subunit of the 26 S proteasome and modulates the proteolysis of mitotic cyclins". The Journal of Biological Chemistry. 272 (38): 24081–7. doi:10.1074/jbc.272.38.24081. PMID9295362.
Chen Y, Riley DJ, Zheng L, Chen PL, Lee WH (December 2002). "Phosphorylation of the mitotic regulator protein Hec1 by Nek2 kinase is essential for faithful chromosome segregation". The Journal of Biological Chemistry. 277 (51): 49408–16. doi:10.1074/jbc.M207069200. PMID12386167.
Tien AC, Lin MH, Su LJ, Hong YR, Cheng TS, Lee YC, Lin WJ, Still IH, Huang CY (January 2004). "Identification of the substrates and interaction proteins of aurora kinases from a protein-protein interaction model". Molecular & Cellular Proteomics. 3 (1): 93–104. doi:10.1074/mcp.M300072-MCP200. PMID14602875.
DeLuca JG, Howell BJ, Canman JC, Hickey JM, Fang G, Salmon ED (December 2003). "Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores". Current Biology. 13 (23): 2103–9. doi:10.1016/j.cub.2003.10.056. PMID14654001.
Bharadwaj R, Qi W, Yu H (March 2004). "Identification of two novel components of the human NDC80 kinetochore complex". The Journal of Biological Chemistry. 279 (13): 13076–85. doi:10.1074/jbc.M310224200. PMID14699129.
Lou Y, Yao J, Zereshki A, Dou Z, Ahmed K, Wang H, Hu J, Wang Y, Yao X (May 2004). "NEK2A interacts with MAD1 and possibly functions as a novel integrator of the spindle checkpoint signaling". The Journal of Biological Chemistry. 279 (19): 20049–57. doi:10.1074/jbc.M314205200. PMID14978040.
Joseph J, Liu ST, Jablonski SA, Yen TJ, Dasso M (April 2004). "The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo". Current Biology. 14 (7): 611–7. doi:10.1016/j.cub.2004.03.031. PMID15062103.
Obuse C, Iwasaki O, Kiyomitsu T, Goshima G, Toyoda Y, Yanagida M (November 2004). "A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1". Nature Cell Biology. 6 (11): 1135–41. doi:10.1038/ncb1187. PMID15502821.
Le XF, Lammayot A, Gold D, Lu Y, Mao W, Chang T, Patel A, Mills GB, Bast RC (January 2005). "Genes affecting the cell cycle, growth, maintenance, and drug sensitivity are preferentially regulated by anti-HER2 antibody through phosphatidylinositol 3-kinase-AKT signaling". The Journal of Biological Chemistry. 280 (3): 2092–104. doi:10.1074/jbc.M403080200. PMID15504738.