Geiszt M, Lekstrom K, Witta J, Leto TL (2003). "Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells". J. Biol. Chem. 278 (22): 20006–12. doi:10.1074/jbc.M301289200. PMID12657628.
Takeya R, Ueno N, Kami K, et al. (2003). "Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases". J. Biol. Chem. 278 (27): 25234–46. doi:10.1074/jbc.M212856200. PMID12716910.
Geiszt M, Lekstrom K, Brenner S, et al. (2003). "NAD(P)H oxidase 1, a product of differentiated colon epithelial cells, can partially replace glycoprotein 91phox in the regulated production of superoxide by phagocytes". J. Immunol. 171 (1): 299–306. doi:10.4049/jimmunol.171.1.299. PMID12817011.
Chamulitrat W, Schmidt R, Tomakidi P, et al. (2003). "Association of gp91phox homolog Nox1 with anchorage-independent growth and MAP kinase-activation of transformed human keratinocytes". Oncogene. 22 (38): 6045–53. doi:10.1038/sj.onc.1206654. PMID12955083.
Cheng G, Lambeth JD (2004). "NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain". J. Biol. Chem. 279 (6): 4737–42. doi:10.1074/jbc.M305968200. PMID14617635.
Hilenski LL, Clempus RE, Quinn MT, et al. (2004). "Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells". Arterioscler. Thromb. Vasc. Biol. 24 (4): 677–83. doi:10.1161/01.ATV.0000112024.13727.2c. PMID14670934.
Morré DM, Guo F, Morré DJ (2004). "An aging-related cell surface NADH oxidase (arNOX) generates superoxide and is inhibited by coenzyme Q". Mol. Cell. Biochem. 254 (1–2): 101–9. doi:10.1023/A:1027301405614. PMID14674687.
Chamulitrat W, Stremmel W, Kawahara T, et al. (2004). "A constitutive NADPH oxidase-like system containing gp91phox homologs in human keratinocytes". J. Invest. Dermatol. 122 (4): 1000–9. doi:10.1111/j.0022-202X.2004.22410.x. PMID15102091.
Goyal P, Weissmann N, Grimminger F, et al. (2004). "Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species". Free Radic. Biol. Med. 36 (10): 1279–88. doi:10.1016/j.freeradbiomed.2004.02.071. PMID15110393.
Barbieri SS, Cavalca V, Eligini S, et al. (2005). "Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms". Free Radic. Biol. Med. 37 (2): 156–65. doi:10.1016/j.freeradbiomed.2004.04.020. PMID15203187.
Guzik TJ, Sadowski J, Kapelak B, et al. (2005). "Systemic regulation of vascular NAD(P)H oxidase activity and nox isoform expression in human arteries and veins". Arterioscler. Thromb. Vasc. Biol. 24 (9): 1614–20. doi:10.1161/01.ATV.0000139011.94634.9d. PMID15256399.
Ambasta RK, Kumar P, Griendling KK, et al. (2004). "Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase". J. Biol. Chem. 279 (44): 45935–41. doi:10.1074/jbc.M406486200. PMID15322091.
Geiszt M, Lekstrom K, Leto TL (2005). "Analysis of mRNA transcripts from the NAD(P)H oxidase 1 (Nox1) gene. Evidence against production of the NADPH oxidase homolog-1 short (NOH-1S) transcript variant". J. Biol. Chem. 279 (49): 51661–8. doi:10.1074/jbc.M409325200. PMID15375166.