Diphosphoinositol polyphosphate phosphohydrolase 2 is an enzyme that in humans is encoded by the NUDT4gene.[1][2][3]
The protein encoded by this gene regulates the turnover of diphosphoinositol polyphosphates. The turnover of these high-energy diphosphoinositol polyphosphates represents a molecular switching activity with important regulatory consequences. Molecular switching by diphosphoinositol polyphosphates may contribute to regulating intracellular trafficking. Several alternatively spliced transcript variants have been described, but the full-length nature of some variants has not been determined. Isoforms DIPP2alpha and DIPP2beta are distinguishable from each other solely by DIPP2beta possessing one additional amino acid due to intron boundary skidding in alternate splicing.[3]
References
↑Caffrey JJ, Safrany ST, Yang X, Shears SB (Jun 2000). "Discovery of molecular and catalytic diversity among human diphosphoinositol-polyphosphate phosphohydrolases. An expanding Nudt family". J Biol Chem. 275 (17): 12730–6. doi:10.1074/jbc.275.17.12730. PMID10777568.
↑Caffrey JJ, Shears SB (May 2001). "Genetic rationale for microheterogeneity of human diphosphoinositol polyphosphate phosphohydrolase type 2". Gene. 269 (1–2): 53–60. doi:10.1016/S0378-1119(01)00446-2. PMID11376937.
Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID8125298.
Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID9373149.
Seki N, Ohira M, Nagase T, et al. (1998). "Characterization of cDNA clones in size-fractionated cDNA libraries from human brain". DNA Res. 4 (5): 345–9. doi:10.1093/dnares/4.5.345. PMID9455484.
Fisher DI, Safrany ST, Strike P, et al. (2003). "Nudix hydrolases that degrade dinucleoside and diphosphoinositol polyphosphates also have 5-phosphoribosyl 1-pyrophosphate (PRPP) pyrophosphatase activity that generates the glycolytic activator ribose 1,5-bisphosphate". J. Biol. Chem. 277 (49): 47313–7. doi:10.1074/jbc.M209795200. PMID12370170.