Oesophagostomum laboratory findings

Jump to navigation Jump to search

Oesophagostomum Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Oesophagostomum from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Oesophagostomum laboratory findings On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Oesophagostomum laboratory findings

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA onOesophagostomum laboratory findings

CDC on Oesophagostomum laboratory findings

laboratory findings in the news

on Oesophagostomum laboratory findings

Directions to Hospitals Treating Oesophagostomum

Risk calculators and risk factors for Oesophagostomum laboratory findings

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

A definitive diagnosis of Oesophagostomum infection is traditionally done by demonstrating the presence of the larval or young adult forms in nodules of the intestinal wall via surgical examination of tissue. The larvae usually found in tissues can be 500 nanometers or longer in length.[1] With microscopy, one can identify the larvae based on the presence of somatic musculature divided into four quarters, along with a multinucleated intestine as well as an immature reproductive system.

Laboratory Findings

Laboratory methods are of little use for Oesophagostomum diagnosis. It is virtually impossible to make a diagnosis based on microscopy of stool samples alone, as Oesophagostomum eggs cannot be differentiated from hookworm eggs, which are often found in Oesophagostomum endemic areas. The only way to differentiate between the two species of eggs is to perform coproculture, which allows eggs to develop to their stage three larvae, although this is both time consuming and unreliable. Immunoassay tests like ELISA that monitoring for increases in IgG4 antibodies can indicate tissue invasion by Oesophagostomum. Recent advances, however, have allowed for less invasive and more accurate methods of diagnosis. The following is a review of articles detailing the diagnostic use of PCR assays:

  • Verweij, Jaco J., Anton M. Polderman, et al. “PCR assay for the specific amplification of Oesophagostomum bifurcum DNA from human faeces.” International Journal for Parasitology 30.2 (2000): 137-142. This study developed a molecular-based approach to diagnosing oesophagostomiasis caused by O. bifurcum in humans. Using genetic markers in ribosomal DNA, the researchers developed PCR assays to selectively amplify O. bifurcum DNA from human fecal samples. These assays achieved sensitivity ratings of 94.6% and specificity of 100%, suggesting that the PCR method could be a viable alternative to the long-standing methods of diagnosis as well as an opportunity to reveal more about the epidemiology of oesophagostomiasis.[2]
  • Verweij, Jaco J, Eric A T Brienen, et al. “Simultaneous detection and quantification of Ancylostoma duodenale, Necator americanus and Oesophagostomum bifurcum in fecal samples using multiplex real-time PCR. (2007) Am. J. of Trop. Med. Hygiene 77 (4) 685-690

A multiplex PCR method was developed for simultaneously detection of A. dudodenale, N. americanus and O. bifurcum in human fecal samples. The method was tested on human fecal samples from an area in Ghana where co-infections with all three species are endemic. Results showed that the method was both highly specific and sensitive, attaining 100% specificity and sensitivities of 100%, 86.7%, and 100% for detection of N. americanus, O. bifurcum and A. duodenale respectively. Furthermore, cycle threshold values, which correspond to parasite-specific DNA load, correlated with measured intensity of infection as demonstrated in Kato-Kato smears. This PCR method could potentially elucidate species-specific transmission pathways of hookworm-like infections and improve monitoring of interventions.[3]

References

  1. Ziem, J.B. “Controlling human oesophagostomiasis in northern Ghana.” (Doctoral thesis) Leiden University. 2006. <https://openaccess.leidenuniv.nl/dspace/handle/1887/4917?mode=more>.
  2. Verweij, Jaco J., Anton M. Polderman, et al. “PCR assay for the specific amplification of Oesophagostomum bifurcum DNA from human faeces.” Int. J. Parasitol. 30.2 (2000): 137-142.
  3. Verweij, Jaco J, Eric A T Brienen, et al. “Simultaneous detection and quantification of Ancylostoma duodenale, Necator americanus and Oesophagostomum bifurcum in fecal samples using multiplex real-time PCR.” Am. J. Trop. Med. and Hygiene 77.4 (2007): 685-690.

Template:WH Template:WS