PARD proteins, which were first identified in C. elegans, are essential for asymmetric cell division and polarized growth, whereas CDC42 (MIM 116952) mediates the establishment of cell polarity. The CDC42 GTPase, which is controlled by nucleotide exchange factors (GEFs; see MIM 606057) and GTPase-activating proteins (GAPs; see MIM 604980), interacts with a large set of effector proteins that typically contain a CDC42/RAC (MIM 602048)-interactive binding (CRIB) domain.[supplied by OMIM][2]
↑Kohjima M, Noda Y, Takeya R, Saito N, Takeuchi K, Sumimoto H (Dec 2002). "PAR3beta, a novel homologue of the cell polarity protein PAR3, localizes to tight junctions". Biochem. Biophys. Res. Commun. 299 (4): 641–6. doi:10.1016/s0006-291x(02)02698-0. PMID12459187.
↑Takekuni K, Ikeda W, Fujito T, Morimoto K, Takeuchi M, Monden M, Takai Y (Feb 2003). "Direct binding of cell polarity protein PAR-3 to cell-cell adhesion molecule nectin at neuroepithelial cells of developing mouse". J. Biol. Chem. 278 (8): 5497–500. doi:10.1074/jbc.C200707200. PMID12515806.
Further reading
Johansson A, Driessens M, Aspenström P (2000). "The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1". J. Cell Sci. 113 (18): 3267–75. PMID10954424.
Noda Y, Takeya R, Ohno S, Naito S, Ito T, Sumimoto H (2001). "Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C.". Genes Cells. 6 (2): 107–19. doi:10.1046/j.1365-2443.2001.00404.x. PMID11260256.
Fang CM, Xu YH (2002). "Down-regulated expression of atypical PKC-binding domain deleted asip isoforms in human hepatocellular carcinomas". Cell Res. 11 (3): 223–9. doi:10.1038/sj.cr.7290090. PMID11642408.
Gao L, Macara IG, Joberty G (2003). "Multiple splice variants of Par3 and of a novel related gene, Par3L, produce proteins with different binding properties". Gene. 294 (1–2): 99–107. doi:10.1016/S0378-1119(02)00681-9. PMID12234671.
Kohjima M, Noda Y, Takeya R, Saito N, Takeuchi K, Sumimoto H (2003). "PAR3beta, a novel homologue of the cell polarity protein PAR3, localizes to tight junctions". Biochem. Biophys. Res. Commun. 299 (4): 641–6. doi:10.1016/S0006-291X(02)02698-0. PMID12459187.
Takekuni K, Ikeda W, Fujito T, Morimoto K, Takeuchi M, Monden M, Takai Y (2003). "Direct binding of cell polarity protein PAR-3 to cell-cell adhesion molecule nectin at neuroepithelial cells of developing mouse". J. Biol. Chem. 278 (8): 5497–500. doi:10.1074/jbc.C200707200. PMID12515806.
Warner DR, Pisano MM, Roberts EA, Greene RM (2003). "Identification of three novel Smad binding proteins involved in cell polarity". FEBS Lett. 539 (1–3): 167–73. doi:10.1016/S0014-5793(03)00155-8. PMID12650946.
Brajenovic M, Joberty G, Küster B, Bouwmeester T, Drewes G (2004). "Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network". J. Biol. Chem. 279 (13): 12804–11. doi:10.1074/jbc.M312171200. PMID14676191.
Navarro-Lérida I, Martínez Moreno M, Roncal F, Gavilanes F, Albar JP, Rodríguez-Crespo I (2004). "Proteomic identification of brain proteins that interact with dynein light chain LC8". Proteomics. 4 (2): 339–46. doi:10.1002/pmic.200300528. PMID14760703.
Brill LM, Salomon AR, Ficarro SB, Mukherji M, Stettler-Gill M, Peters EC (2004). "Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry". Anal. Chem. 76 (10): 2763–72. doi:10.1021/ac035352d. PMID15144186.
Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD, Pawson T (2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization". Curr. Biol. 14 (16): 1436–50. doi:10.1016/j.cub.2004.07.051. PMID15324660.