Ribonucleoside-diphosphate reductase subunit M2, also known as ribonucleotide reductase small subunit, is an enzyme that in humans is encoded by the RRM2gene.[1][2]
This gene encodes one of two non-identical subunits for ribonucleotide reductase. This reductase catalyzes the formation of deoxyribonucleotides from ribonucleotides. Synthesis of the encoded protein (M2) is regulated in a cell-cycle dependent fashion. Transcription from this gene can initiate from alternative promoters, which results in two isoforms that differ in the lengths of their N-termini.[1]
Interactive pathway map
Click on genes, proteins and metabolites below to link to respective articles.[§ 1]
↑Pavloff N, Rivard D, Masson S, Shen SH, Mes-Masson AM (1992). "Sequence analysis of the large and small subunits of human ribonucleotide reductase". DNA Seq. 2 (4): 227–34. doi:10.3109/10425179209020807. PMID1627826.
Further reading
Lin ZP, Belcourt MF, Cory JG, Sartorelli AC (2004). "Stable suppression of the R2 subunit of ribonucleotide reductase by R2-targeted short interference RNA sensitizes p53(-/-) HCT-116 colon cancer cells to DNA-damaging agents and ribonucleotide reductase inhibitors". J. Biol. Chem. 279 (26): 27030–8. doi:10.1074/jbc.M402056200. PMID15096505.
Cohen D, Adamovich Y, Reuven N, Shaul Y (2010). "Hepatitis B virus activates deoxynucleotide synthesis in nondividing hepatocytes by targeting the R2 gene". Hepatology. 51 (5): 1538–46. doi:10.1002/hep.23519. PMID20155784.
Ferrandina G, Mey V, Nannizzi S, et al. (2010). "Expression of nucleoside transporters, deoxycitidine kinase, ribonucleotide reductase regulatory subunits, and gemcitabine catabolic enzymes in primary ovarian cancer". Cancer Chemother. Pharmacol. 65 (4): 679–86. doi:10.1007/s00280-009-1073-y. PMID19639316.
Qiu W, Zhou B, Darwish D, et al. (2006). "Characterization of enzymatic properties of human ribonucleotide reductase holoenzyme reconstituted in vitro from hRRM1, hRRM2, and p53R2 subunits". Biochem. Biophys. Res. Commun. 340 (2): 428–34. doi:10.1016/j.bbrc.2005.12.019. PMID16376858.
Beausoleil SA, Villén J, Gerber SA, et al. (2006). "A probability-based approach for high-throughput protein phosphorylation analysis and site localization". Nat. Biotechnol. 24 (10): 1285–92. doi:10.1038/nbt1240. PMID16964243.
Hillier LW, Graves TA, Fulton RS, et al. (2005). "Generation and annotation of the DNA sequences of human chromosomes 2 and 4". Nature. 434 (7034): 724–31. doi:10.1038/nature03466. PMID15815621.
1w69: CRYSTAL STRUCTURE OF MOUSE RIBONUCLEOTIDE REDUCTASE SUBUNIT R2 UNDER REDUCING CONDITIONS. A FULLY OCCUPIED DINUCLEAR IRON CLUSTER AND BOUND ACETATE.