SCO2

Jump to navigation Jump to search


SCO cytochrome oxidase deficient homolog 2 (yeast)
Identifiers
Symbols SCO2 ; MGC125823; MGC125825; SCO1L
External IDs Template:OMIM5 HomoloGene68444
RNA expression pattern
File:PBB GE SCO2 205241 at tn.png
More reference expression data
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

SCO cytochrome oxidase deficient homolog 2 (yeast), also known as SCO2, is a human gene.[1]

Mammalian cytochrome c oxidase (COX) catalyzes the transfer of reducing equivalents from cytochrome c to molecular oxygen and pumps protons across the inner mitochondrial membrane. In yeast, 2 related COX assembly genes, SCO1 and SCO2 (synthesis of cytochrome c oxidase), enable subunits 1 and 2 to be incorporated into the holoprotein. This gene is the human homolog of the yeast SCO2 gene.[1]

References

  1. 1.0 1.1 "Entrez Gene: SCO2 SCO cytochrome oxidase deficient homolog 2 (yeast)".

Further reading

  • Paret C, Ostermann K, Krause-Buchholz U; et al. (1999). "Human members of the SCO1 gene family: complementation analysis in yeast and intracellular localization". FEBS Lett. 447 (1): 65–70. PMID 10218584.
  • Papadopoulou LC, Sue CM, Davidson MM; et al. (1999). "Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene". Nat. Genet. 23 (3): 333–7. doi:10.1038/15513. PMID 10545952.
  • Jaksch M, Ogilvie I, Yao J; et al. (2000). "Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deficiency". Hum. Mol. Genet. 9 (5): 795–801. PMID 10749987.
  • Jaksch M, Horvath R, Horn N; et al. (2001). "Homozygosity (E140K) in SCO2 causes delayed infantile onset of cardiomyopathy and neuropathy". Neurology. 57 (8): 1440–6. PMID 11673586.
  • Jaksch M, Paret C, Stucka R; et al. (2002). "Cytochrome c oxidase deficiency due to mutations in SCO2, encoding a mitochondrial copper-binding protein, is rescued by copper in human myoblasts". Hum. Mol. Genet. 10 (26): 3025–35. PMID 11751685.
  • Salviati L, Hernandez-Rosa E, Walker WF; et al. (2002). "Copper supplementation restores cytochrome c oxidase activity in cultured cells from patients with SCO2 mutations". Biochem. J. 363 (Pt 2): 321–7. PMID 11931660.
  • Salviati L, Sacconi S, Rasalan MM; et al. (2002). "Cytochrome c oxidase deficiency due to a novel SCO2 mutation mimics Werdnig-Hoffmann disease". Arch. Neurol. 59 (5): 862–5. PMID 12020273.
  • Strausberg RL, Feingold EA, Grouse LH; et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932.
  • Collins JE, Goward ME, Cole CG; et al. (2003). "Reevaluating human gene annotation: a second-generation analysis of chromosome 22". Genome Res. 13 (1): 27–36. doi:10.1101/gr.695703. PMID 12529303.
  • Sacconi S, Salviati L, Sue CM; et al. (2003). "Mutation screening in patients with isolated cytochrome c oxidase deficiency". Pediatr. Res. 53 (2): 224–30. PMID 12538779.
  • Tarnopolsky MA, Bourgeois JM, Fu MH; et al. (2004). "Novel SCO2 mutation (G1521A) presenting as a spinal muscular atrophy type I phenotype". Am. J. Med. Genet. A. 125 (3): 310–4. doi:10.1002/ajmg.a.20466. PMID 14994243.
  • Brandenberger R, Wei H, Zhang S; et al. (2005). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation". Nat. Biotechnol. 22 (6): 707–16. doi:10.1038/nbt971. PMID 15146197.
  • Leary SC, Kaufman BA, Pellecchia G; et al. (2005). "Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase". Hum. Mol. Genet. 13 (17): 1839–48. doi:10.1093/hmg/ddh197. PMID 15229189.
  • Collins JE, Wright CL, Edwards CA; et al. (2005). "A genome annotation-driven approach to cloning the human ORFeome". Genome Biol. 5 (10): R84. doi:10.1186/gb-2004-5-10-r84. PMID 15461802.
  • Gerhard DS, Wagner L, Feingold EA; et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMID 15489334.
  • Stiburek L, Vesela K, Hansikova H; et al. (2006). "Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1". Biochem. J. 392 (Pt 3): 625–32. doi:10.1042/BJ20050807. PMID 16083427.
  • Horng YC, Leary SC, Cobine PA; et al. (2005). "Human Sco1 and Sco2 function as copper-binding proteins". J. Biol. Chem. 280 (40): 34113–22. doi:10.1074/jbc.M506801200. PMID 16091356.
  • Matoba S, Kang JG, Patino WD; et al. (2006). "p53 regulates mitochondrial respiration". Science. 312 (5780): 1650–3. doi:10.1126/science.1126863. PMID 16728594.
  • Leary SC, Cobine PA, Kaufman BA; et al. (2007). "The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis". Cell Metab. 5 (1): 9–20. doi:10.1016/j.cmet.2006.12.001. PMID 17189203.
  • Banci L, Bertini I, Ciofi-Baffoni S; et al. (2007). "A structural characterization of human SCO2". Structure. 15 (9): 1132–40. doi:10.1016/j.str.2007.07.011. PMID 17850752.

Template:WikiDoc Sources