Methionine-R-sulfoxide reductase B1 is an enzyme that in humans is encoded by the SEPX1gene.[1][2]
This gene encodes a selenoprotein, which contains a selenocysteine (Sec) residue at its active site. The selenocysteine is encoded by the UGA codon that normally signals translation termination. The 3' UTR of selenoprotein genes have a common stem-loop structure, the sec insertion sequence (SECIS), that is necessary for the recognition of UGA as a Sec codon rather than as a stop signal. This protein belongs to the methionine sulfoxide reductase B (MsrB) family, and it is expressed in a variety of adult and fetal tissues.[2]
↑Lescure A, Gautheret D, Carbon P, Krol A (Feb 2000). "Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif". J Biol Chem. 274 (53): 38147–54. doi:10.1074/jbc.274.53.38147. PMID10608886.
Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID8889548.
Kryukov GV, Kryukov VM, Gladyshev VN (1999). "New mammalian selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements". J. Biol. Chem. 274 (48): 33888–97. doi:10.1074/jbc.274.48.33888. PMID10567350.
Daniels RJ, Peden JF, Lloyd C, et al. (2001). "Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16". Hum. Mol. Genet. 10 (4): 339–52. doi:10.1093/hmg/10.4.339. PMID11157797.
Moskovitz J, Singh VK, Requena J, et al. (2002). "Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity". Biochem. Biophys. Res. Commun. 290 (1): 62–5. doi:10.1006/bbrc.2001.6171. PMID11779133.