This gene encodes a ubiquitin ligase that is specific for receptor-regulated SMAD proteins in the bone morphogenetic protein (BMP) pathway. A similar protein in Xenopus is involved in embryonic pattern formation. Alternative splicing results in multiple transcript variants encoding different isoforms. An additional transcript variant has been identified, but its full length sequence has not been determined.[2]
↑Yamaguchi K, Ohara O, Ando A, Nagase T (Apr 2008). "Smurf1 directly targets hPEM-2, a GEF for Cdc42, via a novel combination of protein interaction modules in the ubiquitin-proteasome pathway". Biol. Chem. 389 (4): 405–13. doi:10.1515/BC.2008.036. PMID18208356.
↑Lu K, Yin X, Weng T, Xi S, Li L, Xing G, Cheng X, Yang X, Zhang L, He F (Aug 2008). "Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1". Nat. Cell Biol. 10 (8): 994–1002. doi:10.1038/ncb1760. PMID18641638.
↑Fukunaga E, Inoue Y, Komiya S, Horiguchi K, Goto K, Saitoh M, Miyazawa K, Koinuma D, Hanyu A, Imamura T (Dec 2008). "Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells". J. Biol. Chem. 283 (51): 35660–7. doi:10.1074/jbc.M710496200. PMID18927080.
Nagase T, Kikuno R, Nakayama M, Hirosawa M, Ohara O (2001). "Prediction of the coding sequences of unidentified human genes. XVIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Res. 7 (4): 273–81. doi:10.1093/dnares/7.4.271. PMID10997877.
Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001). "Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation". J. Biol. Chem. 276 (16): 12477–80. doi:10.1074/jbc.C100008200. PMID11278251.
Suzuki C, Murakami G, Fukuchi M, Shimanuki T, Shikauchi Y, Imamura T, Miyazono K (2002). "Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane". J. Biol. Chem. 277 (42): 39919–25. doi:10.1074/jbc.M201901200. PMID12151385.
Tajima Y, Goto K, Yoshida M, Shinomiya K, Sekimoto T, Yoneda Y, Miyazono K, Imamura T (2003). "Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factor-beta signaling by Smad7". J. Biol. Chem. 278 (12): 10716–21. doi:10.1074/jbc.M212663200. PMID12519765.
Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL (2003). "Regulation of cell polarity and protrusion formation by targeting RhoA for degradation". Science. 302 (5651): 1775–9. doi:10.1126/science.1090772. PMID14657501.
Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ, Lee KY, Bae SC (2004). "Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation". J. Biol. Chem. 279 (28): 29409–17. doi:10.1074/jbc.M313120200. PMID15138260.
Shearwin-Whyatt LM, Brown DL, Wylie FG, Stow JL, Kumar S (2005). "N4WBP5A (Ndfip2), a Nedd4-interacting protein, localizes to multivesicular bodies and the Golgi, and has a potential role in protein trafficking". J. Cell Sci. 117 (Pt 16): 3679–89. doi:10.1242/jcs.01212. PMID15252135.
Bryan B, Cai Y, Wrighton K, Wu G, Feng XH, Liu M (2005). "Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth". FEBS Lett. 579 (5): 1015–9. doi:10.1016/j.febslet.2004.12.074. PMID15710384.
Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL (2005). "High-throughput mapping of a dynamic signaling network in mammalian cells". Science. 307 (5715): 1621–5. doi:10.1126/science.1105776. PMID15761153.