SNAPAP

Jump to navigation Jump to search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

SNARE-associated protein Snapin is a protein that in humans is encoded by the SNAPIN gene.[1][2][3]

Function

SNAPAP is a component of the SNARE complex of proteins that is required for synaptic vesicle docking and fusion.[1] SNAPAP is also a component of the ubiquitously expressed BLOC1 multisubunit protein complex. BLOC1 is required for normal biogenesis of specialized organelles of the endosomal-lysosomal system, such as melanosomes and platelet dense granules.[3][4]

Snapin has been established to be a promoter of vesicle docking, as it plays a role in binding to SNAP-25, which together stabilize and favor SNARE complex assembly and vesicle docking.[5] Specifically, the degree to which snapin is necessary for proper synaptic release varies across species. The functions of snapin have been reported to be independent of synaptotagmin, and works through the SNAP-25 pathway to stabilize, prime, and dock vesicles.[5]

Interactions

SNAPAP has been shown to interact with:

References

  1. 1.0 1.1 1.2 Ilardi JM, Mochida S, Sheng ZH (Feb 1999). "Snapin: a SNARE-associated protein implicated in synaptic transmission". Nature Neuroscience. 2 (2): 119–24. doi:10.1038/5673. PMID 10195194.
  2. 2.0 2.1 Hunt RA, Edris W, Chanda PK, Nieuwenhuijsen B, Young KH (Apr 2003). "Snapin interacts with the N-terminus of regulator of G protein signaling 7". Biochemical and Biophysical Research Communications. 303 (2): 594–9. doi:10.1016/S0006-291X(03)00400-5. PMID 12659861.
  3. 3.0 3.1 "Entrez Gene: SNAPAP SNAP-associated protein".
  4. 4.0 4.1 4.2 4.3 4.4 Starcevic M, Dell'Angelica EC (Jul 2004). "Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1)". The Journal of Biological Chemistry. 279 (27): 28393–401. doi:10.1074/jbc.M402513200. PMID 15102850.
  5. 5.0 5.1 Yu SC, Klosterman SM, Martin AA, Gracheva EO, Richmond JE (2013). "Differential roles for snapin and synaptotagmin in the synaptic vesicle cycle". PLOS ONE. 8 (2): e57842. doi:10.1371/journal.pone.0057842. PMC 3585204. PMID 23469084.
  6. Buxton P, Zhang XM, Walsh B, Sriratana A, Schenberg I, Manickam E, Rowe T (Oct 2003). "Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells". The Biochemical Journal. 375 (Pt 2): 433–40. doi:10.1042/BJ20030427. PMC 1223698. PMID 12877659.
  7. Morenilla-Palao C, Planells-Cases R, García-Sanz N, Ferrer-Montiel A (Jun 2004). "Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity". The Journal of Biological Chemistry. 279 (24): 25665–72. doi:10.1074/jbc.M311515200. PMID 15066994.

Further reading